Today, loads and stores are treated as having @unowned(unsafe) ownership
semantics. This leaves the user to specify ownership changes on the loaded or
stored value independently of the load/store by inserting ARC operations. With
the change to Semantic SIL, this will no longer be true. Instead loads, stores
have ownership semantics that one must reason about such as copy, take, and
trivial.
This change moves us closer to that world by eliminating the default
OwnershipQualification argument from create{Load,Store}. This means that the
compiler developer cannot ignore reasoning about the ownership semantics of the
memory operation that they are creating.
Operationally, this is a NFC change since I have just gone through the compiler
and updated all places where we create loads, stores to pass in the former
default argument ({Load,Store}OwnershipQualifier::Unqualified), to
SILBuilder::create{Load,Store}(...). For now, one can just do that in situations
where one needs to create loads/stores, but over time, I am going to tighten the
semantics up via the verifier.
rdar://28685236
This lets us get to the goal of +0 guaranteed closure contexts. NFC yet, just add the under-the-hood ability for partial_apply instructions producing callee-guaranteed closures to be parsed, printed, and serialized.
It's the same thing as for alloc_ref: the optional [tail_elems ...] attribute specify the tail elements to allocate.
For details see docs/SIL.rst
This feature is needed so that we can allocate a MangedBuffer with alloc_ref_dynamic.
The ManagedBuffer.create() function uses the dynamic self type to create the buffer instance.
SILType substitutions are still done with the old form, and until
BoundGenericTypes hold conformances, we still have to pass around
a ModuleDecl in a few places we really shouldn't, but one step
at a time.
String literal expressions, as well as the magic literals #file and
tuple value that is then fed into one or two call expressions. For
string literals, that tuple value was implicitly splatted, breaking
AST invariants.
Instead, keep string literals and these magic literals that produce a
string as a single expression node, but store the declarations that
will be used to transform the raw literal into the complete
literal. SILGen will form the appropriate calls. This representation
is far simpler---the AST no longer has a bunch of implicit nodes---and
doesn't break AST invariants.
If a `T?` is converted to `Any?` to pass to a `_Nullable id` interface in ObjC, avoid the intermediate conversion and bridge straight to AnyObject? too.
In Swift, default arguments are associated with a function or
initializer's declaration---not with its type. This was not always the
case, and TupleType's ability to store a default argument kind is a
messy holdover from those dark times.
Eliminate the default argument kind from TupleType, which involves
migrating a few more clients over to declaration-centric handling of
default arguments. Doing so is usually a bug-fix anyway: without the
declaration, one didn't really have
The SILGen test changes are due to a name-mangling fix that fell out
of this change: a tuple type is mangled differently than a non-tuple
type, and having a default argument would make the parameter list of a
single-parameter function into a tuple type. Hence,
func foo(x: Int = 5)
would get a different mangling from
func foo(x: Int)
even though we didn't actually allow overloading.
Fixes rdar://problem/24016341, and helps us along the way to SE-0111
(removing the significance of argument labels) because argument labels
are also declaration-centric, and need the same information.
Strict aliasing only applies to memory operations that use strict
addresses. The optimizer needs to be aware of this flag. Uses of raw
addresses should not have their address substituted with a strict
address.
Also add Builtin.LoadRaw which will be used by raw pointer loads.
When we have an argument expr of type Any that's being emitted as a bridged ObjC object parameter, look through any ErasureExprs and directly bridge the concrete value. This saves us emitting an intermediate 'Any' value in the common case where a value of known concrete type is passed in from Swift.
There are many places where we do the 'if inside a protocol, get the
Self type parameter, otherwise, use the declared type' dance.
We actually have really handy utility methods that encapsulate this,
so let's use them more.
Check whether we're performing a native reabstraction or a foreign bridging operation for an argument *before* evaluating its ArgumentSource. NFC intended yet, but this refactoring should make it easier to add peepholes for certain reabstractions or bridging operations.
Till now there was no way in SIL to explicitly express a dependency of an instruction on any opened archetypes used by it. This was a cause of many errors and correctness issues. In many cases the code was moved around without taking into account these dependencies, which resulted in breaking the invariant that any uses of an opened archetype should be dominated by the definition of this archetype.
This patch does the following:
- Map opened archetypes to the instructions defining them, i.e. to open_existential instructions.
- Introduce a helper class SILOpenedArchetypesTracker for creating and maintaining such mappings.
- Introduce a helper class SILOpenedArchetypesState for providing a read-only API for looking up available opened archetypes.
- Each SIL instruction which uses an opened archetype as a type gets an additional opened archetype operand representing a dependency of the instruction on this archetype. These opened archetypes operands are an in-memory representation. They are not serialized. Instead, they are re-constructed when reading binary or textual SIL files.
- SILVerifier was extended to conduct more thorough checks related to the usage of opened archetypes.
Till now there was no way in SIL to explicitly express a dependency of an instruction on any opened archetypes used by it. This was a cause of many errors and correctness issues. In many cases the code was moved around without taking into account these dependencies, which resulted in breaking the invariant that any uses of an opened archetype should be dominated by the definition of this archetype.
This patch does the following:
- Map opened archetypes to the instructions defining them, i.e. to open_existential instructions.
- Introduce a helper class SILOpenedArchetypesTracker for creating and maintaining such mappings.
- Introduce a helper class SILOpenedArchetypesState for providing a read-only API for looking up available opened archetypes.
- Each SIL instruction which uses an opened archetype as a type gets an additional opened archetype operand representing a dependency of the instruction on this archetype. These opened archetypes operands are an in-memory representation. They are not serialized. Instead, they are re-constructed when reading binary or textual SIL files.
- SILVerifier was extended to conduct more thorough checks related to the usage of opened archetypes.
Till now there was no way in SIL to explicitly express a dependency of an instruction on any opened archetypes used by it. This was a cause of many errors and correctness issues. In many cases the code was moved around without taking into account these dependencies, which resulted in breaking the invariant that any uses of an opened archetype should be dominated by the definition of this archetype.
This patch does the following:
- Map opened archetypes to the instructions defining them, i.e. to open_existential instructions.
- Introduce a helper class SILOpenedArchetypesTracker for creating and maintaining such mappings.
- Introduce a helper class SILOpenedArchetypesState for providing a read-only API for looking up available opened archetypes.
- Each SIL instruction which uses an opened archetype as a type gets an additional opened archetype operand representing a dependency of the instruction on this archetype. These opened archetypes operands are an in-memory representation. They are not serialized. Instead, they are re-constructed when reading binary or textual SIL files.
- SILVerifier was extended to conduct more thorough checks related to the usage of opened archetypes.
There was a weird corner case with nested generic functions that
would fail in the SIL verifier with some nonsense about archetypes
out of context.
Fix this the "right" way, by re-working Sema function declaration
validation to assign generic signatures in a more principled way.
Previously, nested functions did not get an interface type unless
they themselves had generic parameters.
This was inconsistent with methods nested inside generic types,
which did get an interface type even if they themselves did not
have a generic parameter list.
There's some spill-over in SILGen from this change. Mostly it
makes things more consistent and fixes some corner cases.
The fix for methods to lower the dynamic method type from the substituted AST type of the expression also needed to be applied to the optional chaining, subscript, and property paths.
This also exposed a problem in the Clang importer, where imported subscript accessors would get the unbound generic context type as their Self parameter type instead of the type with the correct generic parameters. Fix this by renaming the all-too-convenient ParamDecl::createSelf factory to `createUnboundSelf`, and introduce a new `createSelf` that uses the bound generic type.
Fixes rdar://problem/26447758.
When we override a property to add a didSet, Sema also synthesizes
a getter that simply delegates to the superclass property getter.
The synthesized getter is marked @_transparent. This means that if
the superclass getter is also transparent, but less visible than
the override, mandatory inlining will crash with an assertion.
To fix this, make sure SILGen does not emit a direct reference to
a superclass method if the current function is marked [fragile]
but the method is not.
Fixes <rdar://problem/26408353>.
When an ObjC generic method is found by AnyObject dispatch, we don't have any type information to bind generic parameter dependencies. Sema expands these generic parameters to their upper bounds in an AnyObject dispatch. However, SILGen was still lowering the type of a dynamic method invocation from the method's formal type, expecting its generic parameters to be bound by substitutions provided from a call. Lower dynamic method calls using the substituted type from the AST instead to avoid this. Fixes rdar://problem/26380562.
We did this for func decls in script, so that DI can flag func decls that access script globals before they've been initialized, but we failed to do so for closures, causing us to miss DI violations when closures referenced script globals before their initialization. Fixes rdar://problem/24357063.
Fixes SR-613, a miscompile that caused an overrelease of "self" when partially applying a protocol method to a generic or existential of a refined class-constrained protocol.
We would potentially emit a closure multiple times when converting
a closure to a @convention(c) type. This would result in a compiler
crash if a stored property of @convention(c) type had an initializer
expression and the containing type declaration had multiple
initializers.
Fixes <rdar://problem/25632886>.
Implements SE-0055: https://github.com/apple/swift-evolution/blob/master/proposals/0055-optional-unsafe-pointers.md
- Add NULL as an extra inhabitant of Builtin.RawPointer (currently
hardcoded to 0 rather than being target-dependent).
- Import non-object pointers as Optional/IUO when nullable/null_unspecified
(like everything else).
- Change the type checker's *-to-pointer conversions to handle a layer of
optional.
- Use 'AutoreleasingUnsafeMutablePointer<NSError?>?' as the type of error
parameters exported to Objective-C.
- Drop NilLiteralConvertible conformance for all pointer types.
- Update the standard library and then all the tests.
I've decided to leave this commit only updating existing tests; any new
tests will come in the following commits. (That may mean some additional
implementation work to follow.)
The other major piece that's missing here is migration. I'm hoping we get
a lot of that with Swift 1.1's work for optional object references, but
I still need to investigate.
Add yet one more flavor of hack to DI to recognize where we are
delegating the initialization of 'self'. The existing hack in this
area (for Objective-C factory initializers) is based on recognizing
the value_metatype instruction that feeds into the application of the
factory initializer. C functions imported as initializers don't have a
metatype argument, so instead tag the assignment into the self box as
the initialization of self.
As a minor cleanup in this area, don't emit the dead value_metatype
instruction when invoking a C-imported factory initializer.
Always statically dispatch to C functions imported as members, and
call to the foreign entry point. This gets us through SILGen, but DI
is still deeply unhappy with the resulting SIL.