Specifically, improved debug info retention in:
* tryReplaceRedundantInstructionPair,
* splitAggregateLoad,
* TempLValueElimination,
* Mem2Reg,
* ConstantFolding.
The changes to Mem2Reg allow debug info to be retained in the case tested by
self-nostorage.swift in -O builds, so we have just enabled -O in that file
instead of writing a new test for it.
We attempted to add a case to salvageDebugInfo for unchecked_enum_data, but it
caused crashes in Linux CI that we were not able to reproduce.
Refactor certain functions to make them simpler. and avoid calling
AST.Type.loweredType, which can fail. Instead, access the types of the
function's (SIL) arguments directly.
Correctly handle exploding packs that contain generic or opaque types by using
AST.Type.mapOutOfEnvironment().
@substituted types cause the shouldExplode predicate to be unreliable for AST
types, so restrict it to just SIL.Type. Add test cases for functions that have
@substituted types.
Re-enable PackSpecialization in FunctionPass pipeline.
Add a check to avoid emitting a destructure_tuple of the original function's
return tuple when it is void/().
This is needed in Embedded Swift because the `witness_method` convention requires passing the witness table to the callee.
However, the witness table is not necessarily available.
A witness table is only generated if an existential value of a protocol is created.
This is a rare situation because only witness thunks have `witness_method` convention and those thunks are created as "transparent" functions, which means they are always inlined (after de-virtualization of a witness method call).
However, inlining - even of transparent functions - can fail for some reasons.
This change adds a new EmbeddedWitnessCallSpecialization pass:
If a function with `witness_method` convention is directly called, the function is specialized by changing the convention to `method` and the call is replaced by a call to the specialized function:
```
%1 = function_ref @callee : $@convention(witness_method: P) (@guaranteed C) -> ()
%2 = apply %1(%0) : $@convention(witness_method: P) (@guaranteed C) -> ()
...
sil [ossa] @callee : $@convention(witness_method: P) (@guaranteed C) -> () {
...
}
```
->
```
%1 = function_ref @$e6calleeTfr9 : $@convention(method) (@guaranteed C) -> ()
%2 = apply %1(%0) : $@convention(method) (@guaranteed C) -> ()
...
// specialized callee
sil shared [ossa] @$e6calleeTfr9 : $@convention(method) (@guaranteed C) -> () {
...
}
```
Fixes a compiler crash
rdar://165184147
It eliminates dead access scopes if they are not conflicting with other scopes.
Removes:
```
%2 = begin_access [modify] [dynamic] %1
... // no uses of %2
end_access %2
```
However, dead _conflicting_ access scopes are not removed.
If a conflicting scope becomes dead because an optimization e.g. removed a load, it is still important to get an access violation at runtime.
Even a propagated value of a redundant load from a conflicting scope is undefined.
```
%2 = begin_access [modify] [dynamic] %1
store %x to %2
%3 = begin_access [read] [dynamic] %1 // conflicting with %2!
%y = load %3
end_access %3
end_access %2
use(%y)
```
After redundant-load-elimination:
```
%2 = begin_access [modify] [dynamic] %1
store %x to %2
%3 = begin_access [read] [dynamic] %1 // now dead, but still conflicting with %2
end_access %3
end_access %2
use(%x) // propagated from the store, but undefined here!
```
In this case the scope `%3` is not removed because it's important to get an access violation error at runtime before the undefined value `%x` is used.
This pass considers potential conflicting access scopes in called functions.
But it does not consider potential conflicting access in callers (because it can't!).
However, optimizations, like redundant-load-elimination, can only do such transformations if the outer access scope is within the function, e.g.
```
bb0(%0 : $*T): // an inout from a conflicting scope in the caller
store %x to %0
%3 = begin_access [read] [dynamic] %1
%y = load %3 // cannot be propagated because it cannot be proved that %1 is the same address as %0
end_access %3
```
All those checks are only done for dynamic access scopes, because they matter for runtime exclusivity checking.
Dead static scopes are removed unconditionally.
This is wrong for hoisted load instructions because we don't check for aliasing in the pre-header.
And for side-effect-free instructions it's not really necessary, because that can cleanup CSE afterwards.
Fixes a miscompile
rdar://164034503
It hoists `destroy_value` instructions for non-lexical values.
```
%1 = some_ownedValue
...
last_use(%1)
... // other instructions
destroy_value %1
```
->
```
%1 = some_ownedValue
...
last_use(%1)
destroy_value %1 // <- moved after the last use
... // other instructions
```
In contrast to non-mandatory optimization passes, this is the only pass which hoists destroys over deinit-barriers.
This ensures consistent behavior in -Onone and optimized builds.
Calling `cloneRecursively` from `SpecializationInfo.cloneClosures`
requires the callee having ownership info. Otherwise, the cloner uses
`recordFoldedValue` instead of `recordClonedInstruction`, and
`postProcess` hook is not called, which leads to an assertion failure in
`BridgedClonerImpl::cloneInst`.
* remove `filterUsers(ofType:)`, because it's a duplication of `users(ofType:)`
* rename `filterUses(ofType:)` -> `filter(usersOfType:)`
* rename `ignoreUses(ofType:)` -> `ignore(usersOfType:)`
* rename `getSingleUser` -> `singleUser`
* implement `singleUse` with `Sequence.singleElement`
* implement `ignoreDebugUses` with `ignore(usersOfType:)`
This is a follow-up of eb1d5f484c.
In case of a non-copyable type the final destroy (or take) of a stack location can be missing if the value has only trivial fields.
The optimization inserted a `destroy_addr` in this case although it wasn't there before.
Beside fixing this problem I also refactored the code a bit to make it more readable.
Beside supporting OSSA, this change significantly simplifies the pass.
The main change is that instead of starting at a closure (e.g. `partial_apply`) and finding all call sites, we now start at a call site and look for closures for all arguments. This makes a lot of things much simpler, e.g. not so many intermediate data structures are required to track all the states.
I needed to remove the 3 unit tests because the things those tests were testing are not there anymore. However, the pass is tested with a lot of sil tests (and I added quite a few), which should give good test coverage.
The old ClosureSpecializer pass is still kept in place, because at that point in the pipeline we don't have OSSA, yet. Once we have that, we can replace the old pass withe the new one.
However, the autodiff closure specializer already runs in the OSSA pipeline and there the new changes take effect.
Lifetime diagnostics may report an error within an implicit initializer or
accessor. The source location is misleading in these cases and causes much
consternation.
Storing a trivial enum case in a non-trivial enum must be treated like a non-trivial init or assign, e.g.
```
%1 = enum $Optional<String>, #Optional.none!enumelt
store %1 to [trivial] %0 // <- cannot delete this store!
store %2 to [assign] %0
```