Specifically, improved debug info retention in:
* tryReplaceRedundantInstructionPair,
* splitAggregateLoad,
* TempLValueElimination,
* Mem2Reg,
* ConstantFolding.
The changes to Mem2Reg allow debug info to be retained in the case tested by
self-nostorage.swift in -O builds, so we have just enabled -O in that file
instead of writing a new test for it.
We attempted to add a case to salvageDebugInfo for unchecked_enum_data, but it
caused crashes in Linux CI that we were not able to reproduce.
The `shouldExpand` in `OptUtils.swift` was incorrectly returning `true`
unconditionally when `useAggressiveReg2MemForCodeSize` was disabled. The
expansion might be invalid for types with addr-only types and structs
with deinit, but we didn't check them before. This could lead to invalid
`destructure_struct` instructions without `drop_deinit` being emitted.
Add a special case for checked_cast_addr_br instruction. If it conformed to
SourceDestAddrInstruction, then the diagnostics would already have handled it
naturally, but the instruction's conditional semantics are strange enough that
such a conformance might confuse other passes.
rdar://159793739 (Using `as?` with non-escapable types emits faulty lifetime
diagnostics)
Only record an outgoingArgument access when the current allocation is an
outgoing argument and the function exiting instruction is ReturnInst.
This avoids invalid SIL where we attempt to extend end_access up to an `unwind` but
fail to actually materialize that end_access.
Don't always consider an inout_aliasable argument to have
escaped. AccessEnforcementSelection has already done that analysis and left
begin_access [dynamic] artifacts if the argument has escaped in any meaningful
way. Use that information to
Essential for supporting autoclosures that call mutating methods on span-like
things. Such as UTF8Span.UnicodeScalarIterator.skipForward():
e.g. while numSkipped < n && skipForward() != 0 { ... }
Define LocalAccessInfo._isFullyAssigned to mean that the access does not read
the incoming value. Then treat any assignment that isn't full as a potential read.
* remove `filterUsers(ofType:)`, because it's a duplication of `users(ofType:)`
* rename `filterUses(ofType:)` -> `filter(usersOfType:)`
* rename `ignoreUses(ofType:)` -> `ignore(usersOfType:)`
* rename `getSingleUser` -> `singleUser`
* implement `singleUse` with `Sequence.singleElement`
* implement `ignoreDebugUses` with `ignore(usersOfType:)`
This is a follow-up of eb1d5f484c.
Handle storing to a mutable property implemented as unsafeMutableAddress. In
SIL, the stored address comes from pointer_to_address. Recognize the addressor
pattern and handle the store as if it writes to a regular property of 'self'.
Required for UnsafePointer<~Escapable>.pointee.
Beside supporting OSSA, this change significantly simplifies the pass.
The main change is that instead of starting at a closure (e.g. `partial_apply`) and finding all call sites, we now start at a call site and look for closures for all arguments. This makes a lot of things much simpler, e.g. not so many intermediate data structures are required to track all the states.
I needed to remove the 3 unit tests because the things those tests were testing are not there anymore. However, the pass is tested with a lot of sil tests (and I added quite a few), which should give good test coverage.
The old ClosureSpecializer pass is still kept in place, because at that point in the pipeline we don't have OSSA, yet. Once we have that, we can replace the old pass withe the new one.
However, the autodiff closure specializer already runs in the OSSA pipeline and there the new changes take effect.
When a non-Escapable value depends on the address of a trivial value, we use a
special computeAddressableRange analysis to compute the trivial value's
scope. Extend that analysis to include unreachable paths.
Fixes this pattern:
inlineStorage.span.withUnsafeBytes
where inlineStorage is a trivial type defined in the user module. This
does not reproduce directly with InlineArray, but it is a problem for
user modules that have their own trivial wrapper around an InlineArray.
Fixes rdar://161630684 (Incorrect diagnostic: lifetime-dependent value escapes its scope)
The assertion is hit through `TypeValueInst.simplify` when constructing
an integer literal instruction with a negative 64-bit `Swift.Int` and a
bit width of 32 (the target pointer bit width for arm64_32 watchOS).
This happens because we tell the `llvm::APInt` constructor to treat the
input integer as unsigned by default in `getAPInt`, and a negative
64-bit signed integer does not fit into 32 bits when interpreted as
unsigned.
Fix this by flipping the default signedness assumption for the Swift API
and introducing a convenience method for constructing a 1-bit integer
literal instruction, where the correct signedness assumption depends on
whether you want to use 1 or -1 for 'true'.
In the context of using an integer to construct an `llvm::APInt`, there
are 2 other cases where signedness matters that come to mind:
1. A non-decimal integer literal narrower than 64 bits, such as
`0xABCD`, is used.
2. The desired bit width is >64, since `llvm::APInt` can either
zero-extend or sign-extend the 64-bit integer it accepts.
Neither of these appear to be exercised in SwiftCompilerSources, and
if we ever do, the caller should be responsible for either (1)
appropriately extending the literal manually, e.g.
`Int(Int16(bitPattern: 0xABCD))`, or (2) passing along the appropriate
signedness.
It uses a check on conformance to ForwardInstruction for walking down guaranteed forwarding uses.
Since apply of borrow accessors cannot be represented as ForwardingInstruction, handle them separately.
Representing apply of borrow accessors for consistent handling in the optimizer is TBD.
When the source of a lifetime dependency is a stack-allocated address, extend
the stack allocation to cover all dependent uses.
This avoids miscompilations for "addressable" dependencies which arise in code
built with -enable-experimental-feature AddressableTypes or
AddressableParameters. It is always an error for SILGen to emit the alloc_stack
in such cases. Nonetheless, we want to handle these unexpected cases gracefully
in SIL as a diagnostic error rather than allowing a miscompile.
Fixes rdar://159680262 ([nonescapable] diagnose dependence on a
temporary copy of a global array)
Add a diagnostic to catch addressable dependencies on a trivial values that have
been copied to a temporary stack location. SILGen should never copy the source
of an addressable dependency to a temporary stack location, but this diagnostic
catches such compiler bugs rather than allowing miscompilation.
Fixes rdar://159680262 ([nonescapable] diagnose dependence on a temporary copy
of a global array)