For years, optimizer engineers have been hitting a common bug caused by passes
assuming all SILValues have a parent function only to be surprised by SILUndef.
Generally we see SILUndef not that often so we see this come up later in
testing. This patch eliminates that problem by making SILUndef uniqued at the
function level instead of the module level. This ensures that it makes sense for
SILUndef to have a parent function, eliminating this possibility since we can
define an API to get its parent function.
rdar://123484595
These were always redundant. And there is no way to emit them
correctly for valid OSA when the original dependence scope is in the
caller.
NFC without:
-enable-experimental-feature NonescapableTypes
-enable-lifetime-dependence-diagnostics
An object with tail allocated elements is in risk of being passed to malloc_size, which does not work for non-heap allocated objects.
Conservatively, disable objects with tail allocations.
rdar://121886093
Usually resilient classes cannot be promoted anyway, because their initializers are not visible and let the object appear to escape.
But in some rare situations this check is needed.
rdar://121558570
Add a new mandatory BooleanLiteralFolding pass which constant folds conditional branches with boolean literals as operands.
```
%1 = integer_literal -1
%2 = apply %bool_init(%1) // Bool.init(_builtinBooleanLiteral:)
%3 = struct_extract %2, #Bool._value
cond_br %3, bb1, bb2
```
->
```
...
br bb1
```
This pass is intended to run before DefiniteInitialization, where mandatory inlining and constant folding didn't run, yet (which would perform this kind of optimization).
This optimization is required to let DefiniteInitialization handle boolean literals correctly.
For example in infinite loops:
```
init() {
while true { // DI need to know that there is no loop exit from this while-statement
if some_condition {
member_field = init_value
break
}
}
}
```
```
let c = SomeClass()
```
is turned into
```
private let outlinedVariable = SomeClass() // statically initialized and allocated in the data section
let c = outlinedVariable
```
rdar://111021230
rdar://115502043
Also, make the ObjectOutliner work for OSSA. Though, it currently doesn't run in the OSSA pipeline.
Optionally, the dependency to the initialization of the global can be specified with a dependency token `depends_on <token>`.
This is usually a `builtin "once"` which calls the initializer for the global variable.
Layers:
- FunctionConvention: AST FunctionType: results, parameters
- ArgumentConventions: SIL function arguments
- ApplyOperandConventions: applied operands
The meaning of an integer index is determined by the collection
type. All the mapping between the various indices (results,
parameters, SIL argument, applied arguments) is restricted to the
collection type that owns that mapping. Remove the concept of a
"caller argument index".
By default it lowers the builtin to an `alloc_vector` with a paired `dealloc_stack`.
If the builtin appears in the initializer of a global variable and the vector elements are initialized,
a statically initialized global is created where the initializer is a `vector` instruction.
In regular swift this is a nice optimization. In embedded swift it's a requirement, because the compiler needs to be able to specialize generic deinits of non-copyable types.
The new de-virtualization utilities are called from two places:
* from the new DeinitDevirtualizer pass. It replaces the old MoveOnlyDeinitDevirtualization, which is very basic and does not fulfill the needs for embedded swift.
* from MandatoryPerformanceOptimizations for embedded swift
* add `NominalTypeDecl.isResilient`
* make the return type of `Type.getNominalFields` optional and return nil in case the nominal type is resilient.
This forces users of this API to think about what to do in case the nominal type is resilient.
A transformation must not create a `struct` instruction with a non-copyable type because this would apply that a (potential) deinit would be called for that struct.
Make filter APIs for UseList chainable by adding them to Sequence where Element == Operand
For example, it allows to write:
```
let singleUse = value.uses.ignoreDebugUses.ignoreUsers(ofType: EndAccessInst.self).singleUse
```
Also, add `UseList.getSingleUser(notOfType:)`
When merging stores in a global initializer, it's possible that the merged store is inserted at the wrong location, causing a SIL verifier error.
This is hard to reproduce, but can happen.
The merged store must be inserted _after_ all other stores. Instead it's inserted after the store of the last property. Now, if properties are _not_ initialized in the order they are declared, this problem can show up.
rdar://117189962
Introduce two modes of bridging:
* inline mode: this is basically how it worked so far. Using full C++ interop which allows bridging functions to be inlined.
* pure mode: bridging functions are not inlined but compiled in a cpp file. This allows to reduce the C++ interop requirements to a minimum. No std/llvm/swift headers are imported.
This change requires a major refactoring of bridging sources. The implementation of bridging functions go to two separate files: SILBridgingImpl.h and OptimizerBridgingImpl.h.
Depending on the mode, those files are either included in the corresponding header files (inline mode), or included in the c++ file (pure mode).
The mode can be selected with the BRIDGING_MODE cmake variable. By default it is set to the inline mode (= existing behavior). The pure mode is only selected in certain configurations to work around C++ interop issues:
* In debug builds, to workaround a problem with LLDB's `po` command (rdar://115770255).
* On windows to workaround a build problem.