It indicates that the value's lifetime continues to at least this point.
The boundary formed by all consuming uses together with these
instructions will encompass all uses of the value.
* Allow normal function results of @yield_once coroutines
* Address review comments
* Workaround LLVM coroutine codegen problem: it assumes that unwind path never returns.
This is not true to Swift coroutines as unwind path should end with error result.
This adds SIL-level support and LLVM codegen for normal results of a coroutine.
The main user of this will be autodiff as VJP of a coroutine must be a coroutine itself (in order to produce the yielded result) and return a pullback closure as a normal result.
For now only direct results are supported, but this seems to be enough for autodiff purposes.
Specifies that the optimizer and IRGen must not add runtime calls which are not in the function originally.
This attribute is set for functions with performance constraints or functions which are called from functions with performance.
Just writing some tests for the pack instructions and I would have found having
a textual SIL example in SIL.rst of how to write them to be useful. Just paying
it forward.
Optionally, the dependency to the initialization of the global can be specified with a dependency token `depends_on <token>`.
This is usually a `builtin "once"` which calls the initializer for the global variable.
The dependent 'value' may be marked 'nonescaping', which guarantees that the
lifetime dependence is statically enforceable. In this case, the compiler
must be able to follow all values forwarded from the dependent 'value', and
recognize all final (non-forwarded, non-escaping) use points. This implies
that `findPointerEscape` is false. A diagnostic pass checks that the
incoming SIL to verify that these use points are all initially within the
'base' lifetime. Regular 'mark_dependence' semantics ensure that
optimizations cannot violate the lifetime dependence after diagnostics.
Some notes:
This is not emitted by SILGen. This is just intended to be used so I can write
SIL test cases for transfer non sendable. I did this by adding an
ActorIsolationCrossing field to all FullApplySites rather than adding it into
the type system on a callee. The reason that this makes sense from a modeling
perspective is that an actor isolation crossing is a caller concept since it is
describing a difference in between the caller's and callee's isolation. As a
bonus it makes this a less viral change.
For simplicity, I made it so that the isolation is represented as an optional
modifier on the instructions:
apply [callee_isolation=XXXX] [caller_isolation=XXXX]
where XXXX is a printed representation of the actor isolation.
When neither callee or caller isolation is specified then the
ApplyIsolationCrossing is std::nullopt. If only one is specified, we make the
other one ActorIsolation::Unspecified.
This required me to move ActorIsolationCrossing from AST/Expr.h ->
AST/ActorIsolation.h to work around compilation issues... Arguably that is where
it should exist anyways so it made sense.
rdar://118521597
* `alloc_vector`: allocates an uninitialized vector of elements on the stack or in a statically initialized global
* `vector`: creates an initialized vector in a statically initialized global
This commit just introduces the instruction. In a subsequent commit, I am going
to add support to SILGen to emit this. This ensures that when we assign into a
tuple var we initialize it with one instruction instead of doing it in pieces.
The problem with doing it in pieces is that when one is emitting diagnostics it
looks semantically like SILGen actually is emitting code for initializing in
pieces which could be an error.
This instructions marks the point where all let-fields of a class are initialized.
This is important to ensure the correctness of ``ref_element_addr [immutable]`` for let-fields,
because in the initializer of a class, its let-fields are not immutable, yet.
Codegen is the same, but `begin_dealloc_ref` consumes the operand and produces a new SSA value.
This cleanly splits the liferange to the region before and within the destructor of a class.
I was originally hoping to reuse mark_must_check for multiple types of checkers.
In practice, this is not what happened... so giving it a name specifically to do
with non copyable types makes more sense and makes the code clearer.
Just a pure rename.
The new instruction is needed for opaque values mode to allow values to
be extracted from tuples containing packs which will appear for example
as function arguments.
The new instruction wraps a value in a `@sil_weak` box and produces an
owned value. It is only legal in opaque values mode and is transformed
by `AddressLowering` to `store_weak`.
The new instruction unwraps an `@sil_weak` box and produces an owned
value. It is only legal in opaque values mode and is transformed by
`AddressLowering` to `load_weak`.
It is necessary for opaque values where for casts that will newly start
out as checked_cast_brs and be lowered to checked_cast_addr_brs, since
the latter has the source formal type, IRGen relies on being able to
access it, and there's no way in general to obtain the source formal
type from the source lowered type.