The decision to exclude `-Xcc -D` options from swift module hash
actually doesn't help to solve the problem. It wouldn't reduce the
module variants (or the number of swiftmodule build commands) because
the command-line also encodes all the clang PCM dependencies that do get
affected by `-Xcc` flags.
To avoid the false sharing and the nondeterministic build products,
include most of the `-Xcc` flags, except include search path, into swift
module hash.
rdar://132046247
When the swiftmodule is built with different clang importer arguments,
they can have the same module hash, causing them to be wrongly re-used even
they contains different interfaces. Add ReducedExtraArgs to the module hash to
disambiguate them.
However, some Xcc arguments, most commonly `-D` options do not affect the
swiftmodule being generated. Do not pass `-Xcc -DARGS` to swift
interface compilation to reduce the amount of module variants in the
build.
rdar://131408266
These x-refs might not be resolvable using regular lookup from the 'std' module as they could be instantiated/synthesized
by the clang importer. Augment the lookup logic in that case to try clang importer lookup logic that is used during
the conformance to the C++ iterator protocol.
Fix the problem that when the only module can be found is an
invalid/out-of-date swift binary module, canImport and import statement
can have different view for if the module can be imported or not.
Now canImport will evaluate to false if the only module can be found for
name is an invalid swiftmodule, with a warning with the path to the
module so users will not be surprised by such behavior.
rdar://128876895
The clang nodes associated with Swift's Core Foundation types can already be
represented by a pointer. The interop code does not need to add an extra
layer of indirection in those cases.
rdar://119840281
Make sure the `-Xcc` options to the scanner are correctly considered
when creating ClangImporterCC1 arguments for constructed swift interface
compilation job. Under directcc1 mode, `-Xcc` options should be used to
constructed sub-invocation but should not be added to GenericArgs for
constructing interface compilation jobs.
rdar://128873665
Several offsetting bugs both broke the caching of `ObjCInterfaceAndImplementationRequest` and caused it to usually miss. Fix this whole painful mess. Also has collateral improvements to simple_display().
When caching is enabled with include-tree, the bridging header PCH is
created from the include tree directly. Setup the rewriter correctly
when embedding the bridging header into swift binary module.
rdar://125719747
When caching build is enabled, teach dependency scanner to report
command-lines with `-direct-clang-cc1-module-build` so the later
compilation can instantiate clang importer with cc1 args directly. This
avoids running clang driver code, which might involve file system
lookups, which are the file deps that are not captured and might result
in different compilation mode.
rdar://119275464
Otherwise they may have module dependencies of their own which will not be detected by the scanner and included in the list of explicit inputs for compilation.
ClangImporter’s SwiftLookupTables map Swift names to their corresponding Clang declarations. These tables are built into a module’s clang .pcm file and missing or inaccurate entries can cause name lookup to fail to find an imported declaration.
Swift has always included a helper function that would dump these tables, and swift-ide-test has a command-line switch that would invoke it, but these tools are clumsy to use in many debugging scenarios. Add a frontend flag that dumps the tables at the end of the frontend job, making it a lot easier to get at this information in the context of a specific compilation.
When prefix mapping paths that are used in clang, ensure we are
consistently using the same prefix mapper from clang. This prevents
mismatches that could cause modules to fail to load.
rdar://123324072
An @_objcImpl extension with no category name *should* implement not only the class’s main @interface, but also any class extension @interfaces. Start making this true by making ObjCInterfaceAndImplementationRequest return all of these decls as the interfaces for such an implementation.
This commit doesn’t actually change Sema or IRGen to process the extra interfaces, so it’s NFC.
This reduces the memory overhead of objcImpl from one word per Decl to one bit per Decl, at the cost of making cache lookups slightly slower (but it will only be consulted once for non-objcImpl decls, which is by far the most common case).
This allows calling a C++ function with default arguments from Swift without having to explicitly specify the values of all arguments.
rdar://103975014
Re-write and clean up how clang-importer is created from clang
arguments. Previously, it is unclear if `getClangArguments` will return
CC1 args or driver args and the logic is unnecessarily compilicated when
creating clang invocation. Now clang invocation is always created from
cc1 arguments, which can be directly provided via direct-cc1-mode or
converted from driver args.
There is no functional changes in this patch, other than
`-dump-clang-diagnostics` now will always print cc1 args, and also
driver args if that is applicable.
libc++ recently split the `std` module into many top-level modules: 571178a21a
Previously if a C++ module had `#include <iosfwd>`, importing that module in Swift would make the entire C++ stdlib visible from Swift, since it was a single top-level Clang module. After libc++ got split it doesn't automatically do so, but we need to preserve the current behavior for Swift users.
rdar://119270491
Swift has some module maps it overlays on Linux and Windows that groups all of the C standard library headers into a single module. This doesn’t allow clang and C++ headers to layer properly with the OS/SDK modules. clang will set -fbuiltin-headers-in-system-modules as necessary for Apple SDKs, but Swift will need to pass that flag itself when required by its module maps.
This is a simple work around to avoid importing virtual functions when symbolic
imports are turned on. Test cases that were failing before this WA are in
test/Interop/Cxx/symbolic-imports.
Thanks to Alex Lorenz for providing this WA to me (@hyp).
Conflict in CAS options when
`std::vector<std::string> CacheReplayPrefixMap;` was added.
Conflicts:
include/swift/Frontend/FrontendOptions.h
Resolution: Take both
Allow DependencyScanner to canonicalize path using a prefix map. When
option `-scanner-prefix-map` option is used, dependency scanner will
remap all the input paths in following:
* all the paths in the CAS file system or clang include tree
* all the paths related to input on the command-line returned by scanner
This allows all the input paths to be canonicalized so cache key can be
computed reguardless of the exact on disk path.
The sourceFile field is not remapped so build system can track the exact
file as on the local file system.
From being a scattered collection of 'static' methods in ScanDependencies.cpp
and member methods of ASTContext. This makes 'ScanDependencies.cpp' much easier
to read, and abstracts the actual scanning logic away to a place with common
state which will make it easier to reason about in the future.
`StringRef::endswith_insensitive` and
`StringRef::startswith_insensitive` is deprecated and being replaced
with `StringRef::ends_with_insensitive` and
`StringRef::starts_with_insensitive` respectively.
This fixes the automatic `std::unordered_map` conformance to CxxDictionary on Linux. Previously `std::unordered_map::const_iterator` was not auto-conformed to UnsafeCxxInputIterator because its `operator==` is defined on a templated base class of `const_iterator`.
rdar://105220600
This prevents users from calling functions with unsupported or unavailable return types. This ensures that users don't for example call a function that returns a non-copyable and non-movable type
Fixes https://github.com/apple/swift/issues/64401
`CxxRecordSemanticsKind::ExplicitlyUnsafe` and `CxxRecordSemanticsKind::UnsafePointerMember` were never directly used, and those do not indicate semantics: they indicate safety of the type when used from Swift, which should be handled by another request `IsSafeUseOfCxxDecl` instead of `CxxRecordSemantics`.
Having `ExplicitlyUnsafe` and `UnsafePointerMember` as semantics indicators was problematic, for instance, for types that are move-only and store a pointer at the same time. Swift allowed the usage of these types (under the rules for `UnsafePointerMember` types) when move-only types are disabled, and did not apply the move-only attribute on such types when move-only types are enabled.
rdar://110644300
Reformatting everything now that we have `llvm` namespaces. I've
separated this from the main commit to help manage merge-conflicts and
for making it a bit easier to read the mega-patch.
This is phase-1 of switching from llvm::Optional to std::optional in the
next rebranch. llvm::Optional was removed from upstream LLVM, so we need
to migrate off rather soon. On Darwin, std::optional, and llvm::Optional
have the same layout, so we don't need to be as concerned about ABI
beyond the name mangling. `llvm::Optional` is only returned from one
function in
```
getStandardTypeSubst(StringRef TypeName,
bool allowConcurrencyManglings);
```
It's the return value, so it should not impact the mangling of the
function, and the layout is the same as `std::optional`, so it should be
mostly okay. This function doesn't appear to have users, and the ABI was
already broken 2 years ago for concurrency and no one seemed to notice
so this should be "okay".
I'm doing the migration incrementally so that folks working on main can
cherry-pick back to the release/5.9 branch. Once 5.9 is done and locked
away, then we can go through and finish the replacement. Since `None`
and `Optional` show up in contexts where they are not `llvm::None` and
`llvm::Optional`, I'm preparing the work now by going through and
removing the namespace unwrapping and making the `llvm` namespace
explicit. This should make it fairly mechanical to go through and
replace llvm::Optional with std::optional, and llvm::None with
std::nullopt. It's also a change that can be brought onto the
release/5.9 with minimal impact. This should be an NFC change.