In this part of the code, we are attempting to merge all of the operands into
the same region and then assigning all non-Sendable results of the function to
that same region. The problem that was occuring here was a thinko due to the
control flow of the code here not separating nicely the case of whether or not
we had operands or not. Previously this did not matter, since we just used the
first result in such a case... but since we changed to assign to the first
operand element in some cases, it matters now. To fix this, I split the confused
logic into two different easy to follow control paths... one if we have operands
and one where we do not have an operand. In the case where we have a first
operand, we merge our elements into its region. If we do not have any operands,
then we just perform one large region assign fresh.
This was not exposed by code that used non-coroutines since in SIL only
coroutines today have multiple results.
rdar://132767643
The unittests for PartitionUtils pass in mocked operands and instructions that
cannot be dereferenced. Adding this static CRTP helper allows for the unittest
PartitionOpEvaluator subclass to just return false for it instead of
dereferencing operands or instructions. The rest of the evaluators just get to
use the default "normal" implementation that actually accesses program state.
This will let me know the exact source operand used instead of the source value
representative. This will ensure that the name associated with the diagnostic is
not of the representative value, but the actual value that was the source of the
assign.
This is an NFCI commit that is an algebraic refactor.
This is just moving up the declaration in the chain of dependencies so that I
can write logic in PartitionUtils.h using it. I also added entrypoints to lookup
the ReprensetativeValue for our various emitters.
Specifically:
1. We error now if one transfers an 'inout sending' parameter and does not
reinitialize it before the end of the function.
2. We error now if one merges an 'inout sending' parameter into an actor
isolated region and do not reinitialize it with a non-actor isolated value
before the end of the function.
rdar://126303739
We view the conversion from a Sendable to a non-Sendable function via
convert function to produce a new fresh sendable value. We should
squelch that error.
TLDR:
The reason why I am doing this is it ensures that temporary store_borrow that we
create when materializing a value before were treated as uses. So we would error
on this:
```swift
@MainActor func transferToMain<T>(_ t: T) async {}
func test() async {
let x = NonSendableKlass()
await transferToMain(x)
await transferToMain(x)
}
```
----
store_borrow is an instruction intended to be used to initialize temporary
alloc_stack with borrows. Since it is a temporary, we do not want to error on
the temporaries initialization... instead, we want to error on the use of the
temporary parameter.
This is achieved by making it so that store_borrow still performs an
assign/merge, but does not require that src/dest be alive. So the regions still
merge (yielding diagnostics for later uses).
It also required me to make it so that PartitionOp::{Assign,Merge} do not
require by default. Instead, we want the individual operations to always emit a
PartitionOp::Require explicitly (which they already did).
One thing to be aware of is that when it comes to diagnostics, we already know
how to find a temporaries original value and how to handle that. So this is the
last part of making store_borrow behave nicely.
rdar://129237675
The reason why we are doing this is that otherwise, we have that the alloc_stack
formed for the result is disconnected and despite the fact that we merge it into
the actor region of the class method, we do not have that the alloc_stack
specifically is marked when we attempt to squelch Please.
This patch fixes that problem by detecting when an alloc_stack is being used as
a temporary for an out parameter and makes the alloc_stack initially isolated as
appropriate. It only does this in the specific cases where we can pattern match
it which in my limited testing has handled everything.
When merging SILIsolationInfo for regions, we want to drop
nonisolated(unsafe). This is important since nonisolated(unsafe) should only
apply to the specific "value" that it belongs to, not the entire region.
This creates a problem since in a few places in the code base we initialize a
value (producing a disconnected value) and then initialize it by merging in an
actor isolation. This no longer work since we will then always have
nonisolated(unsafe) stripped, so no values would ever be considered to be
nonisolated(unsafe). After analyzing the use case, I realized that these were
just initialization patterns and in this commit, I added a specific
initialization operation called SILIsolationInfo::initializeTrackableValue and
eliminated those calls to SILIsolationInfo::mergeIsolationRegionInfo.
Since SILIsolationInfo no longer has any merge operation on it, I then
eliminated that code in this commit. This completes the behavior split that I
put into the type system in the last commit. Specifically, I defined a
composition type called SILDynamicMergedIsolationInfo. It represents a
SILIsolationInfo that has been merged... that is why I called it the
DynamicMergedIsolationInfo. It could probably use a better name = (.
This fixes one of the last weird test case that I wrote where we were not letting through valid
nonisolated(unsafe) code.
At the same time, I discovered an additional issue (which can be seen in the
TODOs in this commit), where we are being too conservative around a non-Sendable
class var field. I am going to fix that in the next commit.
rdar://128299305
DISCUSSION: The analysis itself is unable to emit errors. So we achieve the same
functionality by in such cases emitting a partition op that signals to our user
that when they process that partition op they should emit an "unknown pattern"
error at the partition op's instructions.
I have wanted this for a long time, but I never got around to it.
Specifically, I introduced a new composition type called
SILDynamicMergedIsolationInfo that just contains a
SILIsolationInfo. Importantly, whenever one merges a SILIsolationInfo with
another SILIsolationInfo, one gets back a SILDynamicMergedIsolationInfo.
The reason why I am doing this is that we drop nonisolated(unsafe) when merging
so I want to ensure that parts of the code that use merging (where the dropping
occurs) and normal SILIsolationInfo where we do not want to merge is
distinguished.
I made sure we match what we get without region isolation by turning off region
isolation in one of the test runs on the test for this.
There is one problem where for non-final classes with nonisolated(unsafe) var
fields, we currently do not properly squelch since I need to do more
infrastructure work. I am going to do that in the next commit.
rdar://128299305
This ensures that we can properly compute isolation for generic types that
conform to AnyActor.
I found this by playing with test cases from the previous commit. We would not
find an actor type for the actor instance isolation and would fall back along an
incorrect path.
rdar://128021548
As part of this I went through how we handled inference and rather than using a
grab-bag getActorIsolation that was confusing to use, I created split APIs for
specific use cases (actor instance, global actor, just an apply expr crossing)
that makes it clearer inside the SILIsolationInfo::get* APIs what we are
actually trying to model. I found a few issues as a result and fixed most of
them if they were small. I also fixed one bigger one around computed property
initializers in the next commit. There is a larger change I didn't fix around allowing function
ref/partial_apply with isolated self parameters have a delayed flow sensitive
actor isolation... this will be fixed in a subsequent commit.
This also fixes a bunch of cases where we were printing actor-isolated instead
of 'self' isolated.
rdar://127295657
Specifically, the partition unit tests pass in bogus instructions/operands so we
cannot call /any/ methods on them. So I created stubed out helpers on the
evaluator that in the case of mocking just return a default initialized
SILIsolationInfo().
The reason why I am doing this is that really we are running two different
dataflow equations at the same time... one for propagating tracking transferring
sets and the other for propagating regions. Since at the source level the two
dataflow problems are very interrelated, I was unable to come up with an example
where we fail to iterate because of this, but I would like to be sure that we do
not hit one, so I am fixing this here.
rdar://126170014
This is backing out an approach that I thought would be superior, but ended up
causing problems.
Originally, we mapped a region number to an immutable pointer set containing
Operand * where the region was tranferred. This worked great for a time... until
I began to need to propagate other information from the transferring code in the
analysis to the actual diagnostic emitter.
To be able to do that, my thought was to make a wrapper type around Operand
called TransferringOperand that contained the operand and the other information
I needed. This seemed to provide me what I wanted but I later found that since
the immutable pointer set was tracking TransferringOperands which were always
newly wrapped with an Operand *, we actually always created new pointer
sets. This is of course wasteful from a memory perspective, but also prevents me
from tracking transferring operand sets during the dataflow since we would never
converge.
In this commit, I fix that issue by again tracking just an Operand * in the
TransferringOperandSet and instead map each operand to a state structure which
we merge dataflow state into whenever we visit it. This provides us with
everything we need to in the next commit to including a region -> transferring
operand set equality check in our dataflow equations and always converge.
This ensures that we can efficiently iterate over the map which we will need to
do for equality queries.
I am going to add the equality queries in a subsequent commit. Just chopping off
a larger commit.
Specifically:
1. I copy the history that we have been tracking from the transferring operand
value at the transfer point. This is then available for use to emit diagnostics.
2. I added the ability for SILIsolationInfo to not only track the ActorIsolation
of an actor isolated value, but also if we have a value, we can track that as
well. Since we now track a value for task isolated and actor isolated
SILIsolationInfo, I just renamed the field to isolatedValue and moved it out of
the enum.
In a subsequent commit, I am going to wire it up to a few diagnostics.
rdar://123479934
We package all isolation history nodes from a single instruction by placing a
sequence boundary at the bottom. When ever we pop, we actually pop a PartitionOp
at a time meaning that we pop until we see a SequenceBoundary. Thus the sequence
boundary will always be the last element visited when popping meaning that it is
a convenient place to stick the SILLocation associated with the entire
PartitionOp. As a benefit, there was some unused space in IsolationHistory::Node
for that case since we were not using the std::variant field at all.
This means that I added an IsolationHistory field to Partition. Just upstreaming
the beginning part of this work. I added some unittests to exercise the code as
well. NOTE: This means that I did need to begin tracking an
IsolationHistoryFactory and propagating IsolationHistory in the pass
itself... but we do not use it for anything.
A quick overview of the design.
IsolationHistory is the head of an immutable directed acyclic graph. It is
actually represented as an immutable linked list with a special node that ties
in extra children nodes. The users of the information are expected to get a
SmallVectorImpl and process those sibling nodes afterwards. The reason why we
use an immutable approach is that it fits well with the problem and saves space
since different partitions could be pointing at the same linked list
node. Operations occur on an isolation history by pushing/popping nodes. It is
assumed that the user will push nodes in batches with a sequence boundary at the
bottom of the addition which signals to stop processing nodes.
Tieing this together, each Partition within it contains an IsolationHistory. As
the PartitionOpEvaluator applies PartitionOps to Partition in
PartitionOpEvaluator::apply, the evaluator also updates the isolation history in
the partition by first pushing a SequenceBoundary node and then pushing nodes
that will undo the operation that it is performing. This information is used by
the method Partition::popHistory. This pops linked list nodes from its history,
performing the operation in reverse until it hits a SequenceBoundary node.
This allows for one to rewind Partition history. And if one stashes an isolation
history as a target, one can even unwind a partition to what its state was at a
specific transfer point or earlier. Once we are at that point, we can begin
going one node back at a time and see when two values that we are searching for
no longer are apart of the same region. That is a place where we want to emit a
diagnostic. We then process until we find for both of our values history points
where they were the immediate reason why the two regions merge.
rdar://123479934
This should be NFC since the only case where I used this was with self... and I
found another way of doing that using the API I added in the previous commit.
I fixed a bunch of small issues around here that resulted in a bunch of radars
being fixed. Specifically:
1. I made it so that we treat function_refs that are from an actor isolated
function as actor isolated instead of sendable.
2. I made it so that autoclosures which return global actor isolated functions
are treated as producing a global actor isolated function.
3. I made it so that we properly handle SILGen code patterns produced by
Sendable GlobalActor isolated things.
rdar://125452372
rdar://121954871
rdar://121955895
rdar://122692698
ActorIsolation already has a "I have no value case": unspecified. Lets just use
that.
Just a mistake I made that I am trying to fix before anything further depends on
this code.
To squelch errors, we need access to functionality not available in the
unittests. The unittests do not require this functionality anyways, so just
disable squelching during the unittests.
To be more specific this means that either:
1. The use is actually isolated to the same actor. This could mean that the
use is global actor isolated to the same function.
2. The use is nonisolated but is executing within a function that is globally
isolated to the same isolation domain.
rdar://123474616
This issue can come up when a value is initially statically disconnected, but
after we performed dataflow, we discovered that it was actually actor isolated
at the transfer point, implying that we are not actually transferring.
Example:
```swift
@MainActor func testGlobalAndGlobalIsolatedPartialApplyMatch2() {
var ns = (NonSendableKlass(), NonSendableKlass())
// Regions: (ns.0, ns.1), {(mainActorIsolatedGlobal), @MainActor}
ns.0 = mainActorIsolatedGlobal
// Regions: {(ns.0, ns.1, mainActorIsolatedGlobal), @MainActor}
// This is not a transfer since ns is already main actor isolated.
let _ = { @MainActor in
print(ns)
}
useValue(ns)
}
```
To do this, I also added to SILFunction an actor isolation that SILGen puts on
the SILFunction during pre function visitation. We don't print it or serialize
it for now.
rdar://123474616
Just making PartitionUtils.h a little easier to walk through by moving more of
the impl into the .cpp file. This reduces the header from ~1500 lines to ~950
lines which is more managable. This is especially important since I am going
to be adding IsolationHistory to the header file which will expand it even
further.
As an example of the change:
- // expected-note @-1 {{'x' is transferred from nonisolated caller to main actor-isolated callee. Later uses in caller could race with potential uses in callee}}
+ // expected-note @-1 {{transferring disconnected 'x' to main actor-isolated callee could cause races in between callee main actor-isolated and local nonisolated uses}}
Part of the reason I am doing this is that I am going to be ensuring that we
handle a bunch more cases and I wanted to fix this diagnostic before I added
more incaranations of it to the tests.
Long term I would like to get region analysis and transfer non sendable out of
the business of directly interpreting the AST... but if we have to do it now, I
would rather us do it through a helper struct. At least the helper struct can be
modified later to work with additional SIL concurrency support when it is added.
This is in preparation for beginning to track an IsolationRegionInfo in
TransferringOperand.
Just splitting this into a separate commit to make it easier to read.
I need to start tracking the dynamic IsolationRegionInfo for the transferring
operand so I can ignore uses that are part of the same
IsolationRegionInfo. IsolationRegionInfo doesn't fit into a pointer, so just to
keep things the same, I am going to just allocate it.
This is an initial staging commit that tests out the bump ptr allocating without
expanding the type yet.