While the new parameter is added in a compatible way where code which
does not refer to it will get a defaulted nil value; since we refer to a
new parameter name in source, we need to guard it with a language
feature -- as old compilers will not have this new name available.
This should prevent a potential condfail issue.
When the dependency scanner picks a pre-built binary module candidate for a given dependency, it needs to be able to attempt to resolve its cross-import overlays relative to the textual interface that the binary module was built from. For example, if a collection of binary modules are located in, and resolved as dependencies from, a pre-built module directory, the scanner must lookup their corresponding cross-import overlays relative to the defining interface as read out from the binary module's MODULE_INTERFACE_PATH. https://github.com/swiftlang/swift/pull/70817 ensures that binary modules serialize the path to their defining textual interface.
Resolves rdar://130778577
There are two axes on which a saved frontend flag can be categorized for
printing in a `.swiftinterface` file:
1. Whether the flag is "ignorable" or not.
2. Which levels of interface the flag should be in (public, package).
This refactor ensures that those two axes are modeled independently and
prepares the infrastructure to allow flags to appear in the private and package
interfaces without being included in the public interface.
Replace the assert-check if a vtable is available with a regular error message.
This cannot occur in regular builds - only if built with embedded swift and without wmo.
The command line compiler prevents this combination, but it can happen in SourceKit.
rdar://130167087
Add a case for completing type attributes in
inheritance clause position, and limit the
completion of `@unchecked`, `@preconcurrency`, and
`@retroactive` to that case.
These aren't currently claimed by anything other
than SILFunctions, and as such are invalid in
regular Swift code. Treat them as SIL type
attributes. Also while here, fix the SIL reference
attributes to be SIL attributes.
Specifically:
1. We error now if one transfers an 'inout sending' parameter and does not
reinitialize it before the end of the function.
2. We error now if one merges an 'inout sending' parameter into an actor
isolated region and do not reinitialize it with a non-actor isolated value
before the end of the function.
rdar://126303739
This asserts only option is an option to make it quicker/easier to triage
unknown pattern match errors by aborting when we emit it (allowing one to
immediately drop into the debugger at that point).
Previously, it only happened for errors in RegionAnalysis not in
TransferNonSendable itself.
PR #73725 introduced the in-process plugin server library, but the
selection of the library depends on the selected toolchain, which
depends on the compiler target, not the host. When cross-compiling (for
example from macOS to a embedded Unix target), the compiler will
incorrectly chose the `.so` file, not find it, and fail to compile
things like the `@debugDescription` macro.
Move the in-process plugin server library code from the platform
toolchains into the parent type, and code it so it uses the right name
depending on the compiler host at compilation time. This discards the
target and only relies on the compiler host for selecting the right
library.
* [Concurrency] Fix task excutor handling of default actor isolation
The task executor API did not properly account for taking the default
actor locking into account when running code on it, we just took the job
and ran it without checking with the serial executor at all, which
resulted in potential concurrent executions inside the actor --
violating actor isolation.
Here we change the TaskExecutor enqueue API to accept the "target"
serial executor, which in practice will be either generic or a specific
default actor, and coordinate with it when we perform a
runSynchronously.
The SE proposal needs to be amended to showcase this new API, however
without this change we are introducing races so we must do this before
the API is stable.
* Remove _swift_task_enqueueOnTaskExecutor as we don't use it anymore
* no need for the new protocol requirement
* remove the enqueue(_ job: UnownedJob, isolatedTo unownedSerialExecutor: UnownedSerialExecutor)
Thankfully we dont need it after all
* Don't add swift_defaultActor_enqueue_withTaskExecutor and centralize the task executor getting to enqueue()
* move around extern definitions