If a C++ type `Derived` inherits from `Base` privately, the public methods from `Base` should not be callable on an instance of `Derived`. However, C++ supports exposing such methods via a using declaration: `using MyPrivateBase::myPublicMethod;`.
MSVC started using this feature for `std::optional` which means Swift doesn't correctly import `var pointee: Pointee` for instantiations of `std::optional` on Windows. This prevents the automatic conformance to `CxxOptional` from being synthesized.
rdar://114282353 / resolves https://github.com/apple/swift/issues/68068
For any operation that can throw an error, such as calls, property
accesses, and non-exhaustive do..catch statements, record the thrown
error type along with the conversion from that thrown error to the
error type expected in context, as appropriate. This will prevent
later stages from having to re-compute the conversion sequences.
When importing a C++ struct, if its owning module requires cplusplus, Swift tried to auto-conform it to certain protocols from the Cxx module. This triggers name lookup in the clang struct, specifically for `__beginUnsafe()` and `__endUnsafe` methods, which imports all of the base structs including their methods.
This moves the import of base structs out of the name lookup request, preventing cycles.
rdar://116426238
When importing a C++ class template instantiation, Swift translates the template parameter type names from C++ into their Swift equivalent.
For instance, `basic_string<wchar_t, char_traits<wchar_t>, allocator<wchar_t>>` gets imported as `basic_string<Scalar, char_traits<Scalar>, allocator<Scalar>>`: `wchar_t` is imported as `CWideChar`, which is a typealias for `Scalar` on most platforms including Darwin. Notice that Swift goes through the `CWideChar` typealias on the specific platform. Another instantiation `basic_string<uint32_t, char_traits<uint32_t>, allocator<uint32_t>>` also gets imported as `basic_string<Scalar, char_traits<Scalar>, allocator<Scalar>>`: `uint32_t` is also imported as `Scalar`. This is problematic because we have two distinct C++ types that have the same name in Swift.
This change makes sure Swift doesn't go through typealiases when emitting names of template parameters, so `wchar_t` would now get printed as `CWideChar`, `int` would get printed as `CInt`, etc.
This also encourages clients to use the correct type (`CInt`, `CWideChar`, etc) instead of relying on platform-specific typealiases.
rdar://115673622
Parse typed throw specifiers as `throws(X)` in every place where there
are effects specified, and record the resulting thrown error type in
the AST except the type system. This includes:
* `FunctionTypeRepr`, for the parsed representation of types
* `AbstractFunctionDecl`, for various function-like declarations
* `ClosureExpr`, for closures
* `ArrowExpr`, for parsing of types within expression context
This also introduces some serialization logic for the thrown error
type of function-like declarations, along with an API to extract the
thrown interface type from one of those declarations, although right
now it will either be `Error` or empty.
C++ `operator bool()` is currently imported into Swift as `__convertToBool()`, which shouldn't be used by clients directly.
This adds a new protocol into the C++ stdlib overlay: `CxxConvertibleToBool`, along with an intitializer for `Swift.Bool` taking an instance of `CxxConvertibleToBool`.
rdar://115074954
Wrap the `InheritedEntry` array available on both `ExtensionDecl` and
`TypeDecl` in a new `InheritedTypes` class. This class will provide shared
conveniences for working with inherited type clauses. NFC.
This adds an `std.apinotes` file that is installed into `lib/swift/apinotes` along with existing Darwin apinotes. This new file is installed on all platforms. It replaces a few special cases in the compiler for `cmath` and `cstring` functions.
This does not require the upcoming APINotes support for namespaces, however, this does require https://github.com/apple/llvm-project/pull/7309.
rdar://107572302
The existing synthesis mechanism had a bug: `cxxRecordDecl->hasDefaultConstructor()` returns true for C++ types with an implicit default constructor, for instance, `pthread_mutexattr_t`.
rdar://113708880
This makes it possible to initialize `std::vector` from a Swift Sequence. This also conforms C++ vectors to `ExpressibleByArrayLiteral`, making it possible, for instance, to pass a Swift array to a C++ function that takes a vector of strings as a parameter.
rdar://104826995
This is a futile attempt to discourage future use of getType() by
giving it a "scary" name.
We want people to use getInterfaceType() like with the other decl kinds.
In libc++, `pair()` and `pair(_T1 const& __t1, _T2 const& __t2)` are templated with `enable_if`, so these initializers are not imported into Swift.
There should be a way to call `std.pair.init` from Swift, so this change makes sure Swift synthesizes a memberwise initializer for `std.pair`.
rdar://113135110
When Swift fails to import a member of a struct, it checks to see if this member could affect the memory layout of the struct, and if it can, Swift doesn't synthesize the memberwise initializer for this struct. This logic was overly restrictive and treated templated using-decls as potentially affecting the memory layout of the struct.
rdar://113044949
This prevented `std::vector<std::string>` from being auto-conformed to `CxxRandomAccessCollection`.
If an iterator type is templated, and does not have an explicit instantiation via a typedef or a using-decl, its specialization will not have an owning Clang module. Make sure we treat it as a part of the Clang module that owns the template decl.
rdar://112762768 / resolves https://github.com/apple/swift/issues/67410