Doing it in the post-walk meant we ended up
walking the children twice, which lead to duplicate
diagnostics and incorrect inference of the
level of application for function references. Move
it to the pre-walk, ensuring that we resolve any
operator references before folding.
Sink forbidden prefix and `init` recovery into
`resolveDeclRefExpr`, and move diagnosis of `self`
in an `init` accessor into the pre-checking
post-walk such that it applies to any DeclRefExpr.
Control enforcement of member import visibility requirements via a new option,
instead of piggy-backing on the existing IgnoreAccessControl option. Adopt the
option when doing fallback lookups for unviable members so that the compiler
can diagnose the reason that a member is inaccessible more reliably.
Previously, with MemberImportVisibility enabled decls with the package access
level could be mis-diagnosed as inaccessible due to their access level when
really they were inaccessible due to a missing import.
Resolves rdar://131501862.
The move from `@_unsafeInheritExecutor` to `#isolation` for the
with*Continuation breaks code that is using `@_unsafeInheritExecutor` and
calling these APIs. This originally caused silent breakage (which manifest
as runtime crashes), and is now detected by the compiler as an error.
However, despite `@_unsafeInheritExecutor` being an unsafe,
not-intended-to-be-user-facing feature, it is indeed being used, along
with these APIs. Introduce _unsafeInheritExecutor_-prefixed versions of
the `with*Continuation` and `withTaskCancellationHandler` APIs into
the _Concurrency library that use `@_unsafeInheritExecutor`. Then,
teach the type checker to swap in these
_unsafeInheritExecutor_-prefixed versions in lieu of the originals
when they are called from an `@_unsafeInheritExecutor` function. This
allows existing code using `@_unsafeInheritExecutor` with these APIs
to continue working as it has before, albeit with a warning that
`@_unsafeInheritExecutor` has been removed.
Fixes rdar://131151376.
Although I don't plan to bring over new assertions wholesale
into the current qualification branch, it's entirely possible
that various minor changes in main will use the new assertions;
having this basic support in the release branch will simplify that.
(This is why I'm adding the includes as a separate pass from
rewriting the individual assertions)
Implement parser and type-expression folding semantics for invertible
protocols, so that one can write (e.g.) `[any ~Copyable]` as a type
within expression context.
Fixes rdar://125201146.
Rather than doing the transform in the parser, and
then potentially undoing it in Sema, move the
entire transform into Sema. This also lets us
unify the logic between function decls and
closures, and allows ASTGen to benefit from it.
There are sometimes parsing stuations where we don't want to
emit a parsing error, because of feature guarding. For
example, if a Feature involves new syntax for a type, we
must be able to parse both the true and false sides of an
ifdef guarding that new syntax based on a Feature flag.
Parse typed throw specifiers as `throws(X)` in every place where there
are effects specified, and record the resulting thrown error type in
the AST except the type system. This includes:
* `FunctionTypeRepr`, for the parsed representation of types
* `AbstractFunctionDecl`, for various function-like declarations
* `ClosureExpr`, for closures
* `ArrowExpr`, for parsing of types within expression context
This also introduces some serialization logic for the thrown error
type of function-like declarations, along with an API to extract the
thrown interface type from one of those declarations, although right
now it will either be `Error` or empty.
Move logic from `ConstraintGenerator::visitOverloadedDeclRefExpr`
to pre-check to avoid including macro declarations referenced
without `#`. This means that pre-checking would synthesize
`TypeExpr` in situations when there is a type reference that
is shadowed by a stdlib macro.
Resolves: https://github.com/apple/swift/issues/67815
Resolves: rdar://114796811
This is phase-1 of switching from llvm::Optional to std::optional in the
next rebranch. llvm::Optional was removed from upstream LLVM, so we need
to migrate off rather soon. On Darwin, std::optional, and llvm::Optional
have the same layout, so we don't need to be as concerned about ABI
beyond the name mangling. `llvm::Optional` is only returned from one
function in
```
getStandardTypeSubst(StringRef TypeName,
bool allowConcurrencyManglings);
```
It's the return value, so it should not impact the mangling of the
function, and the layout is the same as `std::optional`, so it should be
mostly okay. This function doesn't appear to have users, and the ABI was
already broken 2 years ago for concurrency and no one seemed to notice
so this should be "okay".
I'm doing the migration incrementally so that folks working on main can
cherry-pick back to the release/5.9 branch. Once 5.9 is done and locked
away, then we can go through and finish the replacement. Since `None`
and `Optional` show up in contexts where they are not `llvm::None` and
`llvm::Optional`, I'm preparing the work now by going through and
removing the namespace unwrapping and making the `llvm` namespace
explicit. This should make it fairly mechanical to go through and
replace llvm::Optional with std::optional, and llvm::None with
std::nullopt. It's also a change that can be brought onto the
release/5.9 with minimal impact. This should be an NFC change.
When you have a type that's ambiguous because it's defined in 2 imported
modules, but you don't have to disambiguate by using the module name,
previously no index references were produced. Now most are for the
common case, but notably nested type constructors and generics still
aren't emitted, partially because of https://github.com/apple/swift/issues/65726
Fixes: https://github.com/apple/swift/issues/64598
namespace.
This moves the `isInMacroArgument` predicate and `lookupMacros` into `namelookup`.
ASTScope still encapsulates the scope tree and contains the operation to lookup
the enclosing macro scope, which then invokes a callback to determine whether a
potential macro scope is indeed a macro, because answering this question requires
name lookup.
This source location will be used to determine whether to add a name lookup
option to exclude macro expansions when the name lookup request is constructed.
Currently, the source location argument is unused.
- Allow an if/switch expression to become an
implicit return of a function that has a `#if`
body with a single active element that is an `if`
or `switch`.
- Allow `#if` branches of an if/switch expression,
as long as there is a single active expression
element.
rdar://107487977
Provide ASTWalker with a customization point to specify whether to
check macro arguments (which are type checked but never emitted), the
macro expansion (which is the result of applying the macro and is
actually emitted into the source), or both. Provide answers for the
~115 different ASTWalker visitors throughout the code base.
Fixes rdar://104042945, which concerns checking of effects in
macro arguments---which we shouldn't do.
Introduce SingleValueStmtExpr, which allows the
embedding of a statement in an expression context.
This then allows us to parse and type-check `if`
and `switch` statements as expressions, gated
behind the `IfSwitchExpression` experimental
feature for now. In the future,
SingleValueStmtExpr could also be used for e.g
`do` expressions.
For now, only single expression branches are
supported for producing a value from an
`if`/`switch` expression, and each branch is
type-checked independently. A multi-statement
branch may only appear if it ends with a `throw`,
and it may not `break`, `continue`, or `return`.
The placement of `if`/`switch` expressions is also
currently limited by a syntactic use diagnostic.
Currently they're only allowed in bindings,
assignments, throws, and returns. But this could
be lifted in the future if desired.
Factor out some type-checking logic for ReturnStmt,
including the conversion to FailStmt, into a
request. We can then invoke this request from
both the regular type-checking path, as well as
during a pre-check of an expression.