Rearrange diagnoseGeneralConversionFailure to diagnose structural problems
even if we have some UnresolvedTypes floating around, then reject constraint
failures with UnresolvedTypes in them even harder. This keeps us giving
good errors about failures where we have a structural problem (with buried
irrelevant details) while not complaining about cases that are actually
ambiguous.
The end result of this is that we produce a lot better error messages in the
case of failed archetype inference. This also highlights the poor job we do
handling multi-stmt closureexprs...
Most of this is in updating the standard library, SDK overlays, and
piles of test cases to use the new names. No surprises here, although
this shows us some potential heuristic tweaks.
There is one substantive compiler change that needs to be factored out
involving synthesizing calls to copyWithZone()/copy(zone:). Aside from
that, there are four failing tests:
Swift :: ClangModules/objc_parse.swift
Swift :: Interpreter/SDK/Foundation_test.swift
Swift :: Interpreter/SDK/archiving_generic_swift_class.swift
Swift :: Interpreter/SDK/objc_currying.swift
due to two independent remaining compiler bugs:
* We're not getting partial ordering between NSCoder's
encode(AnyObject, forKey: String) and NSKeyedArchiver's version of
that method, and
* Dynamic lookup (into AnyObject) doesn't know how to find the new
names. We need the Swift name lookup tables enabled to address this.
mode (take 2)
Allow untyped placeholder to take arbitrary type, but default to Void.
Add _undefined<T>() function, which is like fatalError() but has
arbitrary return type. In playground mode, merely warn about outstanding
placeholders instead of erroring out, and transform placeholders into
calls to _undefined(). This way, code with outstanding placeholders will
only crash when it attempts to evaluate such placeholders.
When generating constraints for an iterated sequence of type T, emit
T convertible to $T1
$T1 conforms to SequenceType
instead of
T convertible to SequenceType
This ensures that an untyped placeholder in for-each sequence position
doesn't get inferred to have type SequenceType. (The conversion is still
necessary because the sequence may have IUO type.) The new constraint
system precipitates changes in CSSimplify and CSDiag, and ends up fixing
18741539 along the way.
(NOTE: There is a small regression in diagnosis of issues like the
following:
class C {}
class D: C {}
func f(a: [C]!) { for _: D in a {} }
It complains that [C]! doesn't conform to SequenceType when it should be
complaining that C is not convertible to D.)
<rdar://problem/21167372>
(Originally Swift SVN r31481)
and probably others.
When we're type-checking a failed ApplyExpr that has an overload set that
prevents getting a specific type to feed into the initial typechecking of
the argument list, ranking can often narrow down the list of candidates
further, to the point where there is only one candidate left or where all
candidates agree that one argument is wrong.
In this case, re-type-check the subexpr with the expected type. In the case of
rdar://problem/22243469 we now produce:
t.swift:6:11: error: invalid conversion from throwing function of type '() throws -> ()' to non-throwing function type '() -> Void'
process {
^
instead of:
t.swift:6:3: error: cannot invoke 'process' with an argument list of type '(() throws -> ())'
process {
^
t.swift:6:3: note: overloads for 'process' exist with these partially matching parameter lists: (UInt, fn: () -> Void)
process {
^
Which is a heck of a lot less specific. Similarly, in the testcase from rdar://23550816, instead
of producing:
takeTwoFuncsWithDefaults { $0 + 1 }
error: cannot invoke 'takeTwoFuncsWithDefaults' with an argument list of type '((Int -> Int)?)'
note: expected an argument list of type '(f1: (Int -> Int)?, f2: (String -> String)?)'
we now produce:
error: cannot convert value of type '_ -> Int' to expected argument type '(String -> String)?'
which is a lot closer to what we want to complain about.
code had the effect of squishing the note that printed the overload candidate
set for the operators in question. While these are not generally helpful given
how many overloads we have of (e.g.) the + operator, it doesn't do us any good
to have special cases like this, because methods can have tons of overloads as
well.
call expression onto a callee when it was a binary expression. Doing this
requires improving the diagnostics for when the contextual result type is
incompatible with all candidates, but that is general goodness all around.
This fixes:
<rdar://problem/22333090> QoI: Propagate contextual information in a call to operands
and improves a number of diagnostics where the problem is that an operator
is used in a context that expects a type that it cannot produce.
Swift SVN r31891
automatically pass down TypeCheckExprFlags::AllowUnresolvedTypeVariables
IFF we have no contextual type. This gives us UnresolvedTypes in more cases,
which improves diagnostics in various situations, and also simplifies
CSDiag. The change to misc_diagnostics.swift is a particularly nice progression.
Swift SVN r31406
where we type check the destination first, then apply its type to the source.
This allows us to get diagnostics for assignments that are as good as PBD
initializers and other cases.
Swift SVN r31404
we process contextual constraints when producing diagnostic. Formerly,
we would aggressively drop contextual type information on the floor under
the idea that it would reduce constraints on the system and make it more
likely to be solvable. However, this also has the downside of introducing
ambiguity into the system, and some expr nodes (notably closures) cannot
usually be solved without that contextual information.
In the new model, expr diagnostics are expected to handle the fact that
contextual information may be present, and bail out without diagnosing an
error if that is the case. This gets us more information into closures,
allowing more specific return type information, e.g. in the case in
test/expr/closure/closures.swift.
This approach also produces more correct diagnostics in a bunch of other
cases as well, e.g.:
- var c = [:] // expected-error {{type '[_ : _]' does not conform to protocol 'DictionaryLiteralConvertible'}}
+ var c = [:] // expected-error {{expression type '[_ : _]' is ambiguous without more context}}
and the examples in test/stmt/foreach.swift, test/expr/cast/as_coerce.swift,
test/expr/cast/array_iteration.swift, etc.
That said, this another two steps forward, one back thing. Because we
don't handle propagating sametype constraints from results of calls to their
arguments, we regress a couple of (admittedly weird) cases. This is now
tracked by:
<rdar://problem/22333090> QoI: Propagate contextual information in a call to operands
There is also the one-off narrow case tracked by:
<rdar://problem/22333281> QoI: improve diagnostic when contextual type of closure disagrees with arguments
Swift SVN r31319
diagnoseGeneralConversionFailure() to handle them (instead of it handling as? but
special code handling as!).
As part of this, enhance things so we get error messages about both the problem,
and the overall type involved (when they're different) e.g.:
if let s = setD as? Set<BridgedToObjC> { }
error: 'ObjC' is not a subtype of 'DerivesObjC'
note: in cast from type 'Set<DerivesObjC>' to 'Set<BridgedToObjC>'
This also finally fixes the case in test/Generics/existential_restrictions.swift
Swift SVN r31299
allowing these failures to hook into other diagnostic goodies (e.g. the
"did you mean to use '!' or '?'?" cases showing in the testsuite). That said,
by itself this doesn't have a huge impact, but avoids regressions with other
pending changes.
Swift SVN r31289
the regressions that r31105 introduced in the validation tests, as well as fixing a number
of other validation tests as well.
Introduce a new UnresolvedType to the type system, and have CSDiags start to use it
as a way to get more type information out of incorrect subexpressions. UnresolvedType
generally just propagates around the type system like a type variable:
- it magically conforms to all protocols
- it CSGens as an unconstrained type variable.
- it ASTPrints as _, just like a type variable.
The major difference is that UnresolvedType can be used outside the context of a
ConstraintSystem, which is useful for CSGen since it sets up several of them to
diagnose subexpressions w.r.t. their types.
For now, our use of this is extremely limited: when a closureexpr has no contextual
type available and its parameters are invalid, we wipe them out with UnresolvedType
(instead of the previous nulltype dance) to get ambiguities later on.
We also introduce a new FreeTypeVariableBinding::UnresolvedType approach for
constraint solving (and use this only in one place in CSDiags so far, to resolve
the callee of a CallExpr) which solves a system and rewrites any leftover type
variables as UnresolvedTypes. This allows us to get more precise information out,
for example, diagnosing:
func r22162441(lines: [String]) {
lines.map { line in line.fooBar() }
}
with: value of type 'String' has no member 'fooBar'
instead of: type of expression is ambiguous without more context
This improves a number of other diagnostics as well, but is just the infrastructural
stepping stone for greater things.
Swift SVN r31130
as a way to get more type information out of incorrect subexpressions. UnresolvedType
generally just propagates around the type system like a type variable:
- it magically conforms to all protocols
- it CSGens as an unconstrained type variable.
- it ASTPrints as _, just like a type variable.
The major difference is that UnresolvedType can be used outside the context of a
ConstraintSystem, which is useful for CSGen since it sets up several of them to
diagnose subexpressions w.r.t. their types.
For now, our use of this is extremely limited: when a closureexpr has no contextual
type available and its parameters are invalid, we wipe them out with UnresolvedType
(instead of the previous nulltype dance) to get ambiguities later on.
We also introduce a new FreeTypeVariableBinding::UnresolvedType approach for
constraint solving (and use this only in one place in CSDiags so far, to resolve
the callee of a CallExpr) which solves a system and rewrites any leftover type
variables as UnresolvedTypes. This allows us to get more precise information out,
for example, diagnosing:
func r22162441(lines: [String]) {
lines.map { line in line.fooBar() }
}
with: value of type 'String' has no member 'fooBar'
instead of: type of expression is ambiguous without more context
This improves a number of other diagnostics as well, but is just the infrastructural
stepping stone for greater things.
Swift SVN r31105
machinery, instead of in multiple places in CSSolver and CSDiags. This leads
to more predictable behavior (e.g. by removing the UnboundGenericParameter
failure kind) and eliminates a class of "'_' is not convertible to 'FooType'"
diagnostics.
Swift SVN r30923
which we have a contextual type that was the failure reason. These are a bit
longer but also more explicit than the previous diagnostics.
Swift SVN r30669
directly into the diagnostics subsystem. This ensures a more consistent
treatment of type printing (e.g. catches a case where a diagnostic didn't
single quote the type) and gives these diagnostics access to "aka".
Swift SVN r30609
facilities used by operators etc. This required a bunch of changes to make
the diagnostics changes strictly an improvement:
- Teach the new path about calls to TypeExprs.
- Teach evaluateCloseness some simple things about varargs.
- Make the generic diagnosis logic produce a better error when there is
exactly one match.
Overall, the resultant diagnostics are a step forward: we now produce candidate
set notes more uniformly, and the messages about some existing ones are
more specific. This is just another stepping stone towards progress though.
Swift SVN r30057
by propagating the 'is return expr' bit more carefully in sequence folding, and by
adding another path for handling the return diagnostics better.
This probably improves a number of cases where we complain about "this argument list
is invalid" when the call is in the context of a return.
Swift SVN r29565
var/let bindings to _ when they are never used, and use some values that
are only written. This is a testsuite cleanup, NFC. More to come.
Swift SVN r28406
checking checked cast via bridging. It prevented bridging upcasts using
'as!' from typechecking; we should emit an 'as!'->'as' warning instead.
Also, use ExplicitConversion constraint instead of Conversion when
determining whether a checked cast can be carried out unconditionally.
This matches the constraint used after applying the 'as!'->'as' fixit.
(Also, fix the error that was responsible for breaking
the expr/cast/bridged.swift test.)
<rdar://problem/19813772>
Swift SVN r28034
checking checked cast via bridging. It prevented bridging upcasts using
'as!' from typechecking; we should emit an 'as!'->'as' warning instead.
Also, use ExplicitConversion constraint instead of Conversion when
determining whether a checked cast can be carried out unconditionally.
This matches the constraint used after applying the 'as!'->'as' fixit.
<rdar://problem/19813772>
Swift SVN r28028
a list of their elements, instead of abusing TupleExpr/ParenExpr
to hold them.
This is a more correct representation of what is going on in the
code and produces slightly better diagnostics in obscure cases.
However, the real reason to fix this is that the ParenExpr's that
were being formed were not being installed into the "semantic"
view of the collection expr, not getting type checked correctly,
and led to nonsensical ParenExprs. These non-sensical ParenExprs
blocked turning on AST verification of other ones.
With this fixed, we can finally add AST verification that
IdentityExpr's have sensible types.
Swift SVN r27850
The rule changes are as follows:
* All functions (introduced with the 'func' keyword) have argument
labels for arguments beyond the first, by default. Methods are no
longer special in this regard.
* The presence of a default argument no longer implies an argument
label.
The actual changes to the parser and printer are fairly simple; the
rest of the noise is updating the standard library, overlays, tests,
etc.
With the standard library, this change is intended to be API neutral:
I've added/removed #'s and _'s as appropriate to keep the user
interface the same. If we want to separately consider using argument
labels for more free functions now that the defaults in the language
have shifted, we can tackle that separately.
Fixes rdar://problem/17218256.
Swift SVN r27704
necessary. Wrap forced optional fixit in parens if necessary.
<rdar://problem/20029786> Swift compiler sometimes suggests changing "as!" to "as?!"
Swift SVN r26189
when it is the favored constraint of a disjunction.
This allows 'ns ?? "str" as String as String' to typecheck where ns is
an NSString. This does not regress the relevant test for 17962491.
<rdar://problem/20029786> Swift compiler sometimes suggests changing "as!" to "as?!"
Swift SVN r25910