In the Swift grammar, the top-level of a source file is a mix of three
different kinds of "items": declarations, statements, and expressions.
However, the existing parser forces all of these into declarations at
parse time, wrapping statements and expressions in TopLevelCodeDecls,
so the primary API for getting the top-level entities in source files
is based on getting declarations.
Start generalizing the representation by storing ASTNode instances at
the top level, rather than declaration pointers, updating many (but
not all!) uses of this API. The walk over declarations is a (cached)
filter to pick out all of the declarations. Existing parsed files are
unaffected (the parser still creates top-level code declarations), but
the new "macro expansion" source file kind skips creating top-level
code declarations so we get the pure parse tree. Additionally, some
generalized clients (like ASTScope lookup) will now look at the list
of items, so they'll be able to walk into statements and expressions
without the intervening TopLevelCodeDecl.
Over time, I'd like to phase out `getTopLevelDecls()` entirely,
relying on the new `getTopLevelItems()` for parsed content. We can
introduce TopLevelCodeDecls more lazily for semantic walks.
Rather than bodging the test to make it more robust, fix the functions
in the Threading layer to behave the same as they do on other platforms,
i.e. to guarantee that they always wait *at least* the amount of time
you asked for.
rdar://100236038
Windows' behaviour wrt `Sleep` family functions can be odd. Apparently,
if you specify a time lower than a system tick, they can return early.
This makes the test flaky when it shouldn't be. To fix it, we use the
Multimedia functions to adjust the system tick count as low as we can
get it.
rdar://100236038
We no longer intend to support the libSyntax AST, so let's drop
the tests that are only going to get in the way of us iterating
on the Swift Syntax tree.
Basic should not be allowed to link Parse, yet it was doing so
to allow Version to provide a constructor that would conveniently
parse a StringRef. This entrypoint also emitted diagnostics, so it
pulled in libAST.
Sink the version parser entrypoint down into Parse where it belongs
and point all the clients to the right place.
These will never appear in the source language, but can arise
after substitution when the original type is a tuple type with
a pack expansion type.
Two examples:
- original type: (Int, T...), substitution T := {}
- original type: (T...), substitution T := {Int}
We need to model these correctly to maintain invariants.
Callers that previously used to rely on TupleType::get()
returning a ParenType now explicitly check for the one-element
case instead.
This does not seem to serve a purpose other than corrupting arguments with whitespaces - they get merged into one large string where the whitespace boundary between arguments and whitespaces within arguments are blurred.
Part of rdar://98985453
This enables the ability to cancel requests, which aren’t code completion requests, again.
Previous crashes in SILGen are prevented by disabling cancellation during the SIL stages. Instead, we add dedicated cancellation checkpoints before and after SIL.
rdar://98390926
When the source code is invalid, this allows us to represent tokens that could not be used to form a valid syntax tree with more fidelity.
This commit does not start using GarbageNodes yet, it just sets everything up for them.
It's used to implement `InstructionSet` and `ValueSet`: sets of SILValues and SILInstructions.
Just like `BasicBlockSet` for basic blocks, the set is implemented by setting bits directly in SILNode.
This is super efficient because insertion and deletion to/from the set are basic bit operations.
The cost is an additional word in SILNode. But this is basically negligible: it just adds ~0.7% of memory used for SILInstructions.
In my experiments, I didn't see any relevant changes in memory consumption or compile time.
Upgrade the old mangling from a list of argument types to a
list of requiremnets. For now, only same-type requirements
may actually be mangled since those are all that are available
to the surface language.
Reconstruction of existential types now consists of demangling (a list of)
base protocol(s), decoding the constraints, and converting the same-type
constraints back into a list of arguments.
rdar://96088707
Generic params of typerefs are supposed to be "attached" on the level
they belong, not as a flat list, unlike other parts of the system. Fix
the application of bound generic params by checking how many were
already applied in the hierarchy and ignoring those already attached.
`std::chrono::high_resolution_clock` is being used in
`FrozenMultiMapTest.cpp` but it was relying on `chrono` being included
transitively. Include it directly.