Optimizations can rely on alias analysis to know that an in-argument (or parts of it) is not actually read.
We have to do the same in the verifier: if alias analysis says that an in-argument is not read, there is no need that the memory location is initialized.
Fixes a false verifier error.
rdar://106806899
* for testing: add the option `-simplify-instruction=<instruction-name>` to only run simplification passes for that instruction type
* on the swift side, add `Options.enableSimplification`
The pass to decide which functions should get stack protection was added in https://github.com/apple/swift/pull/60933, but was disabled by default.
This PR enables stack protection by default, but not the possibility to move arguments into temporaries - to keep the risk low.
Moving to temporaries can be enabled with the new frontend option `-enable-move-inout-stack-protector`.
rdar://93677524
This invalidation kind is used when a compute-effects pass changes function effects.
Also, let optimization passes which don't change effects only invalidate the `FunctionBody` and not `Everything`.
To add a module pass in `Passes.def` use the new `SWIFT_MODULE_PASS` macro.
On the swift side, create a `ModulePass`.
It’s run function receives a `ModulePassContext`, which provides access to all functions of a module.
But it doesn't provide any APIs to modify functions.
In order to modify a function, a module pass must use `ModulePassContext.transform(function:)`.
When enabling the option `-sil-opt-profile-repeat=<n>`, the optimizer runs passes n times and reports the total runtime at the end of the pass pipeline.
This is useful to profile a specific optimization pass with `sil-opt`.
For example, to profile the stack promotion pass:
```
sil-opt -stack-promotion -sil-opt-profile-repeat=10000 -o /dev/null test.sil
```
These sets are _much_ more efficient than `Set<Value>` and `Set<Instruction>` because they bridge to the efficient `NodeSet`.
Insertions/deletions are just bit operations.
* split the PassUtils.swift file into PassContext.swift and Passes.swift
* rework `Builder` bridging allowing more insertion point variations, e.g. inserting at the end of a block.
* add Builder.create functions for more instructions
* add `PassContext.splitBlock`
* move SIL modification functions from PassContext to extensions of the relevant types (e.g. instructions).
* rename `Location.bridgedLocation` -> `Location.bridged`
* C++: add a function `getDestructors(SILType type, bool isExactType)’: if the type is a final class or `isExactType` is true, then return the one and only destructor of that class.
* swift: add `getDestructor(ofExactType type: Type)` and `getIncompleteCallees`
* swift: remove `getDestructor` from the PassContext. The API of the `calleeAnalysis` can be used instead.
Allow other compilation units to refer to isFunctionSelectedForPrinting
by declaring it extern. Maybe at some point it might be nice to put
this into a header related to printing.
* Add the possibility to bisect the individual transforms of SILCombine and SimplifyCFG.
To do so, the `-sil-opt-pass-count` option now accepts the format `<n>.<m>`, where `m` is the sub-pass number.
The sub-pass number limits the number of individual transforms in SILCombine or SimplifyCFG.
* Add an option `-sil-print-last` to print the SIL of the currently optimized function before and after the last pass, which is specified with `-sil-opt-pass-count`.
* add `BasicBlockSet`
* add `BasicBlockWorklist`
* add `BasicBlockRange`, which defines a range of blocks from a common dominating “begin” block to a set of “end” blocks.
* add `InstructionRange`, which is similar to `BasicBlockRange`, just on instruction level. It can be used for value lifetime analysis.
* rename `StackList` -> `Stack` and move it to `Optimizer/DataStructures`
* rename `PassContext.passContext` to `PassContext._bridged`
* add notify-functions to PassContext
And a few other small related changes:
* remove libswiftPassInvocation from SILInstructionWorklist (because it's not needed)
* replace start/finishPassRun with start/finishFunction/InstructionPassRun
NFC