This reverts commit dc24c2bd34.
Turns out Chris fixed the build but when I was looking at the bots, his fix had
not been tested yet, so I thought the tree was still red and was trying to
revert to green.
Introduce bridging of NSError to ErrorProtocol, so an Objective-C API
expressed via an "NSError *" will be imported using ErrorProtocol in
the Swift. For example, the Objective-C method:
- (void)handleError:(NSError *)error userInteractionPermitted:(BOOL)userInteractionPermitted;
will now be imported as:
func handleError(_ error: ErrorProtocol, userInteractionPermitted: Bool)
This is bullet (3) under the proposed solution of SE-0112. Note that
we made one semantic change here: instead of removing the conformance
of NSError to ErrorProtocol, which caused numerous problems both
theoretical and actual because the model expects that an NSError
conforms to ErrorProtocol without requiring wrapping, we instead limit
the ErrorProtocol -> NSError conversion that would be implied by
bridging. This is defensible in the short term because it also
eliminates the implicit conversion, and aligns with SE-0072, which
eliminates implicit bridging conversions altogether.
In member ref expressions, if the base is optional, and the expected
expression result is either optional or unknown, suggest a fixit that
makes it into an optional chain expr rather than force unwrapping.
Since in many cases the actual fixit is emitted during diagnosis, and
thus, while type checking sub exprs with no contextual type specified
(so nothing to check for preferring optionality), we also need an
additional flag to pass down from FailureDiagnosis for whether we
prefer to fix as force unwrapping or optional chaining.
I attempted to do this same job via providing a convert type but
setting the ConvertTypeIsOnlyAHint flag on the type checker, but
unfortunately there are a lot of other moving parts that look at that
type, even if it is only supposed to be a hint, so an additional flag
to the CS ended up being cleaner.
The issue here is that the constraint solver was deciding on
FixKind::RelabelCallTuple as the fix for the problem and emitting the
diagnostic, even though there were two different fixes possible.
CSDiags has the infrastructure to support doing doing the right thing
here, but is only being used for ApplyExprs, not SubscriptExprs.
The solution is to fix both problems: remove FixKind::RelabelCallTuple,
to let CSDiags handle the problem, and enhance CSDiags to treat
SubscriptExpr more commonly with ApplyExpr. This improves several cases
where the solver was picking one solution randomly and suggesting that
as a fix, instead of listing that there are multiple different solutions.
Introduce a new constraint kind, BindParam, which relates the type of a
function parameter to the type of a reference to it from within the
function body. If the param type is an inout type, the ref type is an
lvalue type with the same underlying object type; otherwise the two
types must be the same. This prevents DeclRefExprs from being inferred
to have inout type in some cases.
<rdar://problem/15998821> Fail to infer types for closure that takes an inout argument
Swift SVN r32183
fixit hint in CSDiags instead of being a FixKind. This resolves a number of issues with
it, particularly that it didn't actually check to see if the function in question takes
a () argument or not.
This fixes:
<rdar://problem/21692808> QoI: Incorrect 'add ()' fixit with trailing closure
among other issues.
Swift SVN r31728
with no returns *must* be (), add a defaulting constraint
so that it will be inferred as () in the absence of
other possibilities.
The chief benefit here is that it allows better QoI when
the user simply hasn't yet written the return statement.
Doing this does regress a corner case where an attempt
to recover from an uncalled function leads to the
type-checker inferring a result for a closure that
doesn't make any sense at all.
Swift SVN r30476
path associated with them, and to dig the expression the constraint refers to out
of the locator. Also teach simplifyLocator how to simplify closureexpr results out.
This eliminates a class of completely bogus diagnostics where the types reported
don't make any sense, resolving a class of radars like 19821875, where we now
produce excellent diagnostics.
That said, we still pick constraints to report that are unfortunate in some cases,
such as the example in expr/closure/closures.swift.
Swift SVN r29757
X.Protocol is an instance of Y.Type only if X conforms to Y. Since X
is a protocol, this is only true if X contains Y and Y is
self-conforming.
Note that this updates some tests that actually contained invalid code.
Fixes <rdar://problem/20915927>.
Swift SVN r29349
John pointed out that messing with the type checker's notion of "subtype"
is a bad idea. Instead, we should just have a separate check for ABI
compatibility...and eventually (rdar://problem/19517003) just insert the
appropriate thunks rather than forcing the user to perform the conversion.
I'm leaving all the tests as they are because I'm adding a post-type-checking
diagnostic in the next commit, and that should pass all the same tests.
Part of rdar://problem/19600325
Swift SVN r25116
Penalize solutions that involve 'as' -> 'as!' changes by recording a Fix
when simplifying the corresponding checked-cast constraint.
<rdar://problem/19724719> Type checker thinks "(optionalNSString ?? nonoptionalNSString) as String" is a forced cast
Swift SVN r25061
This re-applies r24987, reverted in r24990, with a fix for a spuriously-
introduced error: don't use a favored constraint in a disjunction to avoid
applying a fix. (Why not? Because favoring bubbles up, i.e. the
/disjunction/ becomes favored even if the particular branch is eventually
rejected.) This doesn't seem to affect the outcome, though: the other
branch of the disjunction doesn't seem to be tried anyway.
Finishes rdar://problem/19600325
Swift SVN r25054
And even if we don't suggest wrapping in a closure (say, because there's
already a closure involved), emit a more relevant diagnostic anyway.
(Wordsmithing welcome.)
Wrapping a function value in a closure essentially explicitly inserts a
conversion thunk that we should eventually be able to implicitly insert;
that's rdar://problem/19517003.
Part of rdar://problem/19600325
Swift SVN r24987
Require 'as' when converting from Objective-C type to native type (but
continue to allow implicit conversion from native to Objective-C). This
conversion constraint is called ExplicitConversion; all implicit
conversions are covered by the existing Conversion constraint. Update
standard library and tests to match.
Swift SVN r24496
Add the following functionality to the Swift compiler:
* covariant subtyping of Set
* upcasting, downcasting of Set
* automatic bridging between Set and NSSet, including
* NSSet params/return values in ObjC are imported as Set<NSObject>
* Set params/return values in Swift are visible to ObjC as NSSet
<rdar://problem/18853078> Implement Set<T> up and downcasting
Swift SVN r23751
Calls to fromRaw are replaced with uses of the new failable
initializer init(rawValue:). Similarly, calls to toRaw are replaced
with uses of the rawValue property. Fixes rdar://problem/18357647.
Swift SVN r22164
This is another instance where we choose a favored constraint that
only type checks because we're bridging through NSNumber, causing
awful problems. Fixes rdar://problem/17962491.
Swift SVN r21445
Introduce an attribute that describes when a given CF type is
toll-free-bridged to an Objective-C class, and which class that
is. Use that information in the type checker to provide the CF <->
Objective-C toll-free-bridged conversions directly, rather than using
the user-defined conversion machinery.
Swift SVN r21376
We now provide fixits for if-expressions, point out the actual conditional expression (as opposed to the surrounding expression),
support unary '!' applications and avoid printing type variables in the diagnostic.
Swift SVN r20992
Create a new "OptionalObject" constraint kind in the solver that relates an optional type to its payload type, preserving lvalue-ness, and use it to model ForceValueExpr under the optional-lvalues regime.
Swift SVN r20140
expression applications
(rdar://problem/15933674, rdar://problem/17365394 and many, many dupes.)
When solving for the type of a binOp expression, factor the operand expression
types into account when collating overloads for the operator being applied.
This allows the type checker to now infer types for some binary operations with
hundreds of nested components, whereas previously we could only handle a handful.
(E.g., "1+2+3+4+5+6" previously sent the compiler into a tailspin.)
Specifically, if one of the operands is a literal, favor operator overloads
whose operand, result or contextual types are the default type of the literal
convertible conformance of the the argument literal type.
By doing so we can prevent exponential behavior in the solver and massively
reduce the complexity of many commonly found constraint systems. At the same
time, we'll still defer to "better" overloads if the default one cannot be
applied. (When adding an Int8 to an Int, for example.)
This obviously doesn't solve all of our performance problems (there are more
changes coming), but there are couple of nice side-effects:
- By tracking literal/convertible protocol conformance info within type
variables, I can potentially eliminate many instances of "$T0" and the
like from our diagnostics.
- Favored constraints are placed at the front of the overload resolution
disjunction, so if a system fails to produce a solution they'll be the
first to be mined for a cause. This helps preserve user intent, and leads
to better diagnostics being produced in some cases.
Swift SVN r19848
Previously, bridged value types and their corresponding Objective-C
classes allow inter-conversion via a number of user-defined conversion
functions in the Foundation module. Instead, make this a general
feature of the type checker so we can reason about it more
directly. Fixes <rdar://problem/16956098> and
<rdar://problem/17134986>, and eliminates 11 (half) of the
__conversion functions from the standard library and overlays.
A few notes:
- The XCTest changes are because a String can no longer directly
conform to CVarArg: this is a Good Thing (TM), because it should be
ambiguous: did you mean to pass it as an NSString or a C string?
- The Objective-C representations for the bridged collections are
hard-coded in the type checker. This is unfortunate and can be
remedied by adding another associated type to the
_BridgedToObjectiveC protocol.
Swift SVN r19618
When we see a '.member' expression in optional context, look for the member in the optional's object type if it isn't found in Optional itself. <rdar://problem/16125392>
Swift SVN r19469
Allow a String value to be implicitly converted to ConstUnsafePointer<{UInt8,Int8,Void}> by string-to-pointer conversion, when enabled by a staging flag.
Swift SVN r19366
Add primitive type-checker rules for pointer arguments. An UnsafePointer argument accepts:
- an UnsafePointer value of matching element type, or of any type if the argument is UnsafePointer<Void>,
- an inout parameter of matching element type, or of any type if the argument is UnsafePointer<Void>, or
- an inout Array parameter of matching element type, or of any type if the argument is UnsafePointer<Void>.
A ConstUnsafePointer argument accepts:
- an UnsafePointer, ConstUnsafePointer, or AutoreleasingUnsafePointer value of matching element type, or of any type if the argument is ConstUnsafePointer<Void>,
- an inout parameter of matching element type, or of any type if the argument is ConstUnsafePointer<Void>, or
- an inout or non-inout Array parameter of matching element type, or of any type if the argument is ConstUnsafePointer<Void>.
An AutoreleasingUnsafePointer argument accepts:
- an AutoreleasingUnsafePointer value of matching element type, or
- an inout parameter of matching element type.
This disrupts some error messages in unrelated tests, which is tracked by <rdar://problem/17380520>.
Swift SVN r19008
This makes categories of NSString, NSArray, and NSDictionary available
on String, Array, and Dictionary. Note that we only consider
categories not present in the Objective-C Foundation module, because
we want to manually map those APIs ourselves. Hence, no changes to the
NSStringAPI. Implements <rdar://problem/13653329>.
Swift SVN r18920
Semantically, these expressions handle the same thing: an upcast of a
collection when the underlying element types of the source are
subtypes of or can be bridged to subtypes of the destination. This
reduces some branching in the type checker and eliminates duplication
in SILGen.
Swift SVN r18865
Allow class metatypes (including class-constrained existential metatypes) to be treated as subtypes of AnyObject, and single-@objc protocol metatypes to be treated as subtypes of the Protocol class from objc. No codegen support yet, so this is hidden behind a frontend flag for now.
Swift SVN r18810