Protocols with a superclass bound written as `protocol P where Self: C`
return null from getSuperclass(). Unqualified lookup only cares about
getSuperclassDecl(), so serialize that instead.
Fixes rdar://problem/124478687.
We preserve the current semantics that we have today by requiring that either all SILResultInfo are transferring or none are transferring. This also let me swap to @sil_transferring representation.
I did both of these things to fix SIL issues around transferring.
It also ensures that we now properly emit
Our standard conception of suppressible features assumes we should
always suppress the feature if the compiler doesn't support it.
This presumes that there's no harm in suppressing the feature, and
that's a fine assumption for features that are just adding information
or suppressing new diagnostics. Features that are semantically
relevant, maybe even ABI-breaking, are not a good fit for this,
and so instead of reprinting the decl with the feature suppressed,
we just have to hide the decl entirely. The missing middle here
is that it's sometimes useful to be able to adopt a type change
to an existing declaration, and we'd like older compilers to be
able to use the older version of the declaration. Making a type
change this way is, of course, only really acceptable for
@_alwaysEmitIntoClient declarations; but those represent quite a
few declarations that we'd like to be able to refine the types of.
Rather than trying to come up with heuristics based on
@_alwaysEmitIntoClient or other sources of information, this design
just requires the declaration to opt in with a new attribute,
@_allowFeatureSuppress. When a declaration opts in to suppression
for a conditionally-suppressible feature, the printer uses the
suppression serially-print-with-downgraded-options approach;
otherwise it uses the print-only-if-feature-is-available approach.
we only check if the loaded module is built from a package interface. This is
not enough as a binary module could just contain exportable decls if built with
experimental-skip-non-exportable-decls, essentially resulting in content equivalent
to interface content. This might be made a default behavior so this PR requires
a module to opt in to allow non-resilient access by a participating client in the
same package.
Since it affects module format, SWIFTMODULE_VERSION_MINOR is updated.
rdar://123651270
There are scenarios where different compilers are distributed with
compatible serialization format versions and the same tag. Distinguish
swiftmodules in such a case by assigning them to different distribution
channels. A compiler expecting a specific channel will only read
swiftmodules from the same channel. The channels should be defined by
downstream code as it is by definition vendor specific.
For development, a no-channel compiler loads or defining the env var
SWIFT_IGNORE_SWIFTMODULE_REVISION skips this new check.
rdar://123731777
[transferring] Implement transferring result and clean up transferring param support by making transferring a bit on param instead of a ParamSpecifier.
Instead it is a bit on ParamDecl and SILParameterInfo. I preserve the consuming
behavior by making it so that the type checker changes the ParamSpecifier to
ImplicitlyCopyableConsuming if we have a default param specifier and
transferring is set. NOTE: The user can never write ImplicitlyCopyableConsuming.
NOTE: I had to expand the amount of flags that can be stored in ParamDecl so I
stole bits from TypeRepr and added some logic for packing option bits into
TyRepr and DefaultValue.
rdar://121324715
Ad-hoc requirements are now obsolete by making `remoteCall`,
`record{Argument, ReturnType}`, `decodeNextArgument` protocols
requirements and injecting witness tables for `SerializationRequirement`
conformances during IRGen.
In preparation for inserting mark_dependence instructions for lifetime
dependencies early, immediately after SILGen. That will simplify the
implementation of borrowed arguments.
Marking them unresolved is needed to make OSSA verification
conservative until lifetime dependence diagnostics runs.
This adds SIL-level support and LLVM codegen for normal results of a coroutine.
The main user of this will be autodiff as VJP of a coroutine must be a coroutine itself (in order to produce the yielded result) and return a pullback closure as a normal result.
For now only direct results are supported, but this seems to be enough for autodiff purposes.
Test shadowed variable of same type
Fully type check caller side macro expansion
Skip macro default arg caller side expr at decl primary
Test macro expand more complex expressions
Set synthesized expression as implicit
Add test case for with argument, not compiling currently
Test with swiftinterface
Always use the string representation of the default argument
Now works across module boundary
Check works for multiple files
Make default argument expression work in single file
Use expected-error
Disallow expression macro as default argument
Using as a sub expression in default argument still allowed as expression macros behave the same as built-in magic literals
Decls with a package access level are currently set to public SIL
linkages. This limits the ability to have more fine-grained control
and optimize around resilience and serialization.
This PR introduces a separate SIL linkage and FormalLinkage for
package decls, pipes them down to IRGen, and updates linkage checks
at call sites to include package linkage.
Resolves rdar://121409846
Not quite NFC because apparently the representation bleeds into what's
accepted in some situations where we're supposed to be warning about
conflicts and then making an arbitrary choice. But what we're doing
is nonsense, so we definitely need to break behavior here.
This is setting up for isolated(any) and isolated(caller). I tried
to keep that out of the patch as much as possible, though.
A swiftmodule can only be correctly ingested by a compiler
that has a matching state of using or not-using
NoncopyableGenerics.
The reason for this is fundamental: the absence of a Copyable
conformance in the swiftmodule indicates that a type is
noncopyable. Thus, if a compiler with NoncopyableGenerics
reads a swiftmodule that was not compiled with that feature,
it will think every type in that module is noncopyable.
Similarly, if a compiler with NoncopyableGenerics produces a
swiftmodule, there will be Copyable requirements on each
generic parameter that the compiler without the feature will
become confused about.
The solution here is to trigger a module mismatch, so that
the compiler re-generates the swiftmodule file using the
swiftinterface, which has been kept compatible with the compiler
regardless of whether the feature is enabled.
Optionally, the dependency to the initialization of the global can be specified with a dependency token `depends_on <token>`.
This is usually a `builtin "once"` which calls the initializer for the global variable.
When matching against a noncopyable value, whether the match operation can
borrow the value in-place or needs to take ownership of it is significant.
This can generally be determined from the kind of pattern being used, except
in the case of expr patterns, where it depends on type-checking the `~=`
operator that was used.
The dependent 'value' may be marked 'nonescaping', which guarantees that the
lifetime dependence is statically enforceable. In this case, the compiler
must be able to follow all values forwarded from the dependent 'value', and
recognize all final (non-forwarded, non-escaping) use points. This implies
that `findPointerEscape` is false. A diagnostic pass checks that the
incoming SIL to verify that these use points are all initially within the
'base' lifetime. Regular 'mark_dependence' semantics ensure that
optimizations cannot violate the lifetime dependence after diagnostics.