Lifetime dependencies in SIL tests continue to be represented as a type modifier on the target.
As before, they are represented as a LifetimeDependentTypeRepr in the AST.
@lifetime(target: source1, source2...) where target can be any
parameter or 'self'. We cannot have @lifetime attributes with duplicate targets.
Also, update the internal data structures. Previously LifetimeEntry stored
pairwise (target, source) dependencies. Now, LifetimeEntry will store an optional
target descriptor and an array of source descriptors.
Lifetime dependencies will now be represented with @lifetime attribute in the language.
dependsOn is a type modifier and was represented as a LifetimeDependentTypeRepr in the AST.
I am deleting dependsOn syntax parsing support and retaining LifetimeDependentTypeRepr support.
We may want to represent lifetime dependencies in a function type with a type attribute in the future.
If we use a decl attribute instead, then support for LifetimeDependentTypeRepr can be deleted.
The availability macros definitions are parsed from the command line and
stored in a cache. The cache was in the Parser, which would have it be
computed for each file using availability macros. Let's move it to the
ASTContext instead where it can generally be computed once per invocation
and used across the module.
rdar://134797088
The generality of the `AvailabilityContext` name made it seem like it
encapsulates more than it does. Really it just augments `VersionRange` with
additional set algebra operations that are useful for availability
computations. The `AvailabilityContext` name should be reserved for something
pulls together more than just a single version.
Some requirement machine work
Rename requirement to Value
Rename more things to Value
Fix integer checking for requirement
some docs and parser changes
Minor fixes
If the bodies themselves don't have a
`#sourceLocation` in them, there should be no
harm in skipping; the parsed virtual files get
recorded on the SourceManager, so will be
accessible when doing delayed parsing. The
`InPoundLineEnvironment` flag will be inaccurate,
but that's only needed for the parsing of
`#sourceLocation` itself.
Add a case for completing type attributes in
inheritance clause position, and limit the
completion of `@unchecked`, `@preconcurrency`, and
`@retroactive` to that case.
Out of an abundance of caution, we:
1. Left in parsing support for transferring but internally made it rely on the
internals of sending.
2. Added a warning to tell people that transferring was going to
be removed very soon.
Now that we have given people some time, remove support for parsing
transferring.
rdar://130253724
Previously we would only diagnose and recover for
invalid tokens following a `#if` body for the decl
and postfix expression case. Sink this logic into
`parseIfConfigRaw`, ensuring that we do this for
all `#if` cases. This requires propagating the
context we're parsing in to customize the
diagnostic.
Complete ownership specifiers such as `consuming`,
`borrowing`, and `inout` in parameter type
position. While here, also complete `isolated`.
rdar://127261573
A few things:
1. Internally except for in the parser and the clang importer, we only represent
'sending'. This means that it will be easy to remove 'transferring' once enough
time has passed.
2. I included a warning that suggested to the user to change 'transferring' ->
'sending'.
3. I duplicated the parsing diagnostics for 'sending' so both will still get
different sets of diagnostics for parsing issues... but anywhere below parsing,
I have just changed 'transferring' to 'sending' since transferring isn't
represented at those lower levels.
4. Since SendingArgsAndResults is always enabled when TransferringArgsAndResults
is enabled (NOTE not vis-a-versa), we know that we can always parse sending. So
we import "transferring" as "sending". This means that even if one marks a
function with "transferring", the compiler will guard it behind a
SendingArgsAndResults -D flag and in the imported header print out sending.
rdar://128216574
Add the machinery to support suppression of inference of conformance to
protocols that would otherwise be derived automatically.
This commit does not enable any conformances to be suppressed.
Ensure that we're properly parsing suppressed-conformance constraints
in expression contents and in metatypes. This allows types like `any
~Copyable` in expression context as well as types like `any
~Copyable.Type`.
While we're here, ensure that existentials that involve
suppressed-conformance constraints are spelled with `any`.
Fixes rdar://123728228.
Pitch - https://github.com/apple/swift-evolution/pull/2305
Changes highlights:
dependsOn(paramName) and dependsOn(scoped argName) syntax
dependsOn(paramName) -> copy lifetime dependence for all parameters/self except
when we have Escapable parameters/self, we assign scope
lifetime dependence.
Allow lifetime dependence on parameters without ownership modifier.
Always infer copy lifetime dependence except when we have
Escapable parameters/self, we infer scope lifetime dependence.
Allow lifetime dependence inference on parameters without ownership modifier.
LLVM is presumably moving towards `std::string_view` -
`StringRef::startswith` is deprecated on tip. `SmallString::startswith`
was just renamed there (maybe with some small deprecation inbetween, but
if so, we've missed it).
The `SmallString::startswith` references were moved to
`.str().starts_with()`, rather than adding the `starts_with` on
`stable/20230725` as we only had a few of them. Open to switching that
over if anyone feels strongly though.
Our standard conception of suppressible features assumes we should
always suppress the feature if the compiler doesn't support it.
This presumes that there's no harm in suppressing the feature, and
that's a fine assumption for features that are just adding information
or suppressing new diagnostics. Features that are semantically
relevant, maybe even ABI-breaking, are not a good fit for this,
and so instead of reprinting the decl with the feature suppressed,
we just have to hide the decl entirely. The missing middle here
is that it's sometimes useful to be able to adopt a type change
to an existing declaration, and we'd like older compilers to be
able to use the older version of the declaration. Making a type
change this way is, of course, only really acceptable for
@_alwaysEmitIntoClient declarations; but those represent quite a
few declarations that we'd like to be able to refine the types of.
Rather than trying to come up with heuristics based on
@_alwaysEmitIntoClient or other sources of information, this design
just requires the declaration to opt in with a new attribute,
@_allowFeatureSuppress. When a declaration opts in to suppression
for a conditionally-suppressible feature, the printer uses the
suppression serially-print-with-downgraded-options approach;
otherwise it uses the print-only-if-feature-is-available approach.
The goal is to have a lightweight way to pass an unapplied
diagnostic to general routines. Constructing a Diagnostic
is quite expensive as something we're potentially doing in
hot paths, as opposed to just when we're actually emitting
the diagnostic. This design allows the expense to be delayed
until we need it.
I've also optimized the Diagnostic constructor to avoid
copying arguments unnecessarily; this is a relatively small
expense, since arguments are POD, but there's really no good
reason not to do it.
Instead it is a bit on ParamDecl and SILParameterInfo. I preserve the consuming
behavior by making it so that the type checker changes the ParamSpecifier to
ImplicitlyCopyableConsuming if we have a default param specifier and
transferring is set. NOTE: The user can never write ImplicitlyCopyableConsuming.
NOTE: I had to expand the amount of flags that can be stored in ParamDecl so I
stole bits from TypeRepr and added some logic for packing option bits into
TyRepr and DefaultValue.
rdar://121324715