* Initial draft of async sequences
* Adjust AsyncSequence associated type requirements
* Add a draft implementation of AsyncSequence and associated functionality
* Correct merge damage and rename from GeneratorProtocol to AsyncIteratorProtocol
* Add AsyncSequence types to the cmake lists
* Add cancellation support
* [DRAFT] Implementation of protocol conformance rethrowing
* Account for ASTVerifier passes to ensure throwing and by conformance rethrowing verifies appropriately
* Remove commented out code
* OtherConstructorDeclRefExpr can also be a source of a rethrowing kind function
* Re-order the checkApply logic to account for existing throwing calculations better
* Extract rethrowing calculation into smaller functions
* Allow for closures and protocol conformances to contribute to throwing
* Add unit tests for conformance based rethrowing
* Restrict rethrowing requirements to only protocols marked with @rethrows
* Correct logic for gating of `@rethrows` and adjust the determinates to be based upon throws and not rethrows spelling
* Attempt to unify the async sequence features together
* Reorder try await to latest syntax
* revert back to the inout diagnosis
* House mutations in local scope
* Revert "House mutations in local scope"
This reverts commit d91f1b25b59fff8e4be107c808895ff3f293b394.
* Adjust for inout diagnostics and fall back to original mutation strategy
* Convert async flag to source locations and add initial try support to for await in syntax
* Fix case typo of MinMax.swift
* Adjust rethrowing tests to account for changes associated with @rethrows
* Allow parsing and diagnostics associated with try applied to for await in syntax
* Correct the code-completion for @rethrows
* Additional corrections for the code-completion for @rethrows this time for the last in the list
* Handle throwing cases of iteration of async sequences
* restore building XCTest
* First wave of feedback fixes
* Rework constraints checking for async sequence for-try-await-in checking
* Allow testing of for-await-in parsing and silgen testing and add unit tests for both
* Remove async sequence operators for now
* Back out cancellation of AsyncIteratorProtocols
* Restructure protocol conformance throws checking and cache results
* remove some stray whitespaces
* Correct some merge damage
* Ensure the throwing determinate for applying for-await-in always has a valid value and adjust the for-await-in silgen test to reflect the cancel changes
* Squelch the python linter for line length
The "semantic members" query produces the list of members that can
affect the ABI, e.g., of classes. It does not produce the complete
list of members suitable for semantic queries.
of adding a property.
This better matches what the actual implementation expects,
and it avoids some possibilities of weird mismatches. However,
it also requires special-case initialization, destruction, and
dynamic-layout support, none of which I've added yet.
In order to get NSObject default actor subclasses to use Swift
refcounting (and thus avoid the need for the default actor runtime
to generally use ObjC refcounting), I've had to introduce a
SwiftNativeNSObject which we substitute as the superclass when
inheriting directly from NSObject. This is something we could
do in all NSObject subclasses; for now, I'm just doing it in
actors, although it's all actors and not just default actors.
We are not yet taking advantage of our special knowledge of this
class anywhere except the reference-counting code.
I went around in circles exploring a number of alternatives for
doing this; at one point I basically had a completely parallel
"ForImplementation" superclass query. That proved to be a lot
of added complexity and created more problems than it solved.
We also don't *really* get any benefit from this subclassing
because there still wouldn't be a consistent superclass for all
actors. So instead it's very ad-hoc.
This frontend flag can be used as an alternative to
-experimental-skip-non-inlinable-function-bodies that doesn’t skip
functions defining nested types. We want to keep these types as they are
used by LLDB. Other functions ares safe to skip parsing and
type-checking.
rdar://71130519
Adds a new flag "-experimental-skip-all-function-bodies" that skips
typechecking and SIL generation for all function bodies (where
possible).
`didSet` functions are still typechecked and have SIL generated as their
body is checked for the `oldValue` parameter, but are not serialized.
Parsing will generally be skipped as well, but this isn't necessarily
the case since other flags (eg. "-verify-syntax-tree") may force delayed
parsing off.
Extend effects checking to ensure that each reference to a variable
bound by an 'async let' is covered by an "await" expression and occurs
in a suitable context.
getFragileFunctionKind() would report that all initializers in
non-resilient public types were inlinable, including static
properties.
This was later patched by VarDecl::isInitExposedToClients(),
which was checked in diagnoseInlinableDeclRefAccess().
However, the latter function only looked at the innermost
DeclContexts, not all parent contexts, so it would incorrectly
diagnose code with a nested DeclContext inside of a static
property initializer.
Fix this by changing getFragileFunctionKind() to call
isInitExposedToClients() and simplifying
diagnoseInlinableDeclRefAccess().
This commit also introduces a new isLayoutExposedToClients()
method, which is similar to isInitExposedToClients(), except
it also returns 'true' if the property does not have an
initializer (and in fact the latter is implemented in terms
of the former).
This attribute allows to define a pre-specialized entry point of a
generic function in a library.
The following definition provides a pre-specialized entry point for
`genericFunc(_:)` for the parameter type `Int` that clients of the
library can call.
```
@_specialize(exported: true, where T == Int)
public func genericFunc<T>(_ t: T) { ... }
```
Pre-specializations of internal `@inlinable` functions are allowed.
```
@usableFromInline
internal struct GenericThing<T> {
@_specialize(exported: true, where T == Int)
@inlinable
internal func genericMethod(_ t: T) {
}
}
```
There is syntax to pre-specialize a method from a different module.
```
import ModuleDefiningGenericFunc
@_specialize(exported: true, target: genericFunc(_:), where T == Double)
func prespecialize_genericFunc(_ t: T) { fatalError("dont call") }
```
Specially marked extensions allow for pre-specialization of internal
methods accross module boundries (respecting `@inlinable` and
`@usableFromInline`).
```
import ModuleDefiningGenericThing
public struct Something {}
@_specializeExtension
extension GenericThing {
@_specialize(exported: true, target: genericMethod(_:), where T == Something)
func prespecialize_genericMethod(_ t: T) { fatalError("dont call") }
}
```
rdar://64993425
Extend the actor isolation checking rules to account for global
actors. For example, a function annotated with a given global actor
can invoke synchronous methods from the same global actor, but not
from a different global actor or a particular actor instance.
Similarly, a method of an (instance) actor that is annotated with a
global actor attribute is not part of the (instance) actor and,
therefore, cannot operate on its actor-isolated state.
Global actor types can be used as attributes on various kinds of
declarations to indicate that those declarations are part of the
isolated state of that global actor. Allow such annotation and perform
basic correctness checks.
The globalActor attribute indicates that a particular type describes a
global actor. Global actors allow the notion of actor state isolation
to be spread across various declarations throughout a program, rather
than being centered around a single actor class. There are useful
primarily for existing notions such as "main thread" or subsystems
accessed through global/singleton state.
Actor classes never have non-actor superclasses, so we can ensure that
all actor classes have a common vtable prefix for the
`enqueue(partialTask:)` operation. This allows us to treat all actor
classes uniformly, without having to go through the Actor witness
table every time.
Introduce a new Actor protocol, which is a class-bound protocol with only
one requirement:
func enqueue(partialTask: PartialAsyncTask)
All actor classes implicitly conform to this protocol, and will synthesize
a (currently empty) definition of `enqueue(partialTask:)` unless a suitable
one is provided explicitly.
This method had a messy contract:
- Setting the diags parameter to nullptr inhibited caching
- The initExpr out parameter could only used if no result
had yet been cached
Let's instead use the request evaluator here.