Introduce an "all members" request to compute all of the members of a
given iterable declaration context in stable order. This builds on ABI
members so that it will also include, e.g., type aliases synthesized
for associated types.
The "semantic members" query produces the list of members that can
affect the ABI, e.g., of classes. It does not produce the complete
list of members suitable for semantic queries.
This attribute allows to define a pre-specialized entry point of a
generic function in a library.
The following definition provides a pre-specialized entry point for
`genericFunc(_:)` for the parameter type `Int` that clients of the
library can call.
```
@_specialize(exported: true, where T == Int)
public func genericFunc<T>(_ t: T) { ... }
```
Pre-specializations of internal `@inlinable` functions are allowed.
```
@usableFromInline
internal struct GenericThing<T> {
@_specialize(exported: true, where T == Int)
@inlinable
internal func genericMethod(_ t: T) {
}
}
```
There is syntax to pre-specialize a method from a different module.
```
import ModuleDefiningGenericFunc
@_specialize(exported: true, target: genericFunc(_:), where T == Double)
func prespecialize_genericFunc(_ t: T) { fatalError("dont call") }
```
Specially marked extensions allow for pre-specialization of internal
methods accross module boundries (respecting `@inlinable` and
`@usableFromInline`).
```
import ModuleDefiningGenericThing
public struct Something {}
@_specializeExtension
extension GenericThing {
@_specialize(exported: true, target: genericMethod(_:), where T == Something)
func prespecialize_genericMethod(_ t: T) { fatalError("dont call") }
}
```
rdar://64993425
Provide an accessor for retrieving the parsed members, generalizing
`ParseMembersRequest` so it can provide the parsed members for
deserialized/synthesized declarations as well. This is the counterpart
to the recently-generalized `getSemanticMembers()`; together, these
should suffice for most (all?) clients of `getMembers()`.
Generalize `ClassDecl::getEmittedMembers()` to operate on an
`IterableDeclContext`, so that it can be for other nominal types,
extensions, etc. Rename to `getSemanticMembers()` to indicate that
these are all of the members that are semantically part of that
context.
Clean up the implementation slightly so it only forces type checking
for the conformances within that particular context (using
`getLocalConformances()`) and doesn't need to list out each of the
protocols it cares about.
Re-implement operator and precedencegroup decl
lookup to use `namelookup::getAllImports` and
existing decl shadowing logic. This allows us to
find operator decls through `@_exported` imports,
prefer operator decls defined in the same module
over imported decls, and fixes a couple of other
subtle issues.
Because this new implementation is technically
source breaking, as we can find multiple results
where we used to only find one result, it's placed
behind the new Frontend flag
`-enable-new-operator-lookup` (with the aim of
enabling it by default when we get a new language
mode).
However the new logic will always be used if the
result is unambiguous. This means that e.g
`@_exported` operators will be instantly available
as long as there's only one candidate. If multiple
candidates are found, we fall back to the old
logic.
Resolves SR-12132.
Resolves rdar://59198796.
We had some duplicated logic between getResilienceExpansion() and
getFragileFunctionKind(). Clean this up by moving the latter into
AST, and re-implementing the former in terms of the latter.
This also fixes a crash in at least one case where these two
implementations had previously diverged.
Fixes <rdar://problem/60605117>.
When a “separately imported overlay” is added to a SourceFile, two things happen:
1. The direct import of the underlying module is removed from getImports*() by default. It is only visible if the caller passes ImportFilterKind:: ShadowedBySeparateOverlay. This means that non-module-scoped lookups will search _OverlayModule before searching its re-export UnderlyingModule, allowing it to shadow underlying declarations.
2. When you ask for lookupInModule() to look in the underlying module in that source file, it looks in the overlays instead. This means that UnderlyingModule.foo() can find declarations in _OverlayModule.
Effectively revert #28907. The request evaluator will also catch re-entrancy here, and those cycles can be broken with NameLookupFlags::IgnoreNewExtensions.
By convention, most structs and classes in the Swift compiler include a `dump()` method which prints debugging information. This method is meant to be called only from the debugger, but this means they’re often unused and may be eliminated from optimized binaries. On the other hand, some parts of the compiler call `dump()` methods directly despite them being intended as a pure debugging aid. clang supports attributes which can be used to avoid these problems, but they’re used very inconsistently across the compiler.
This commit adds `SWIFT_DEBUG_DUMP` and `SWIFT_DEBUG_DUMPER(<name>(<params>))` macros to declare `dump()` methods with the appropriate set of attributes and adopts this macro throughout the frontend. It does not pervasively adopt this macro in SILGen, SILOptimizer, or IRGen; these components use `dump()` methods in a different way where they’re frequently called from debugging code. Nor does it adopt it in runtime components like swiftRuntime and swiftReflection, because I’m a bit worried about size.
Despite the large number of files and lines affected, this change is NFC.
Structurally prevent a number of common anti-patterns involving generic
signatures by separating the interface into GenericSignature and the
implementation into GenericSignatureBase. In particular, this allows
the comparison operators to be deleted which forces callers to
canonicalize the signature or ask to compare pointers explicitly.
This flag, currently staged in as `-experimental-skip-non-inlinable-function-bodies`, will cause the typechecker to skip typechecking bodies of functions that will not be serialized in the resulting `.swiftmodule`. This patch also includes a SIL verifier that ensures that we don’t accidentally include a body that we should have skipped.
There is still some work left to make sure the emitted .swiftmodule is exactly the same as what’s emitted without the flag, which is what’s causing the benchmark noise above. I’ll be committing follow-up patches to address those, but for now I’m going to land the implementation behind a flag.
This eliminates the entire 'lazy generic environment' concept;
essentially, all generic environments are now lazy, and since
each signature has exactly one environment, their construction
no longer needs to be co-ordinated with deserialization.
Lazy parsing for the members of nominal types and extensions depends
only on information already present in
`IterableDeclContext`. Eliminate the use of PersistentParserState as
an intermediary and have the member-parsing request construct a new
`Parser` instance itself to handle parsing. Make this possible even
for ill-formed nominal types/extensions to simplify the code path.
Eliminate `LazyMemberParser` and all of its uses, because it was only
present for lazy member parsing, which no longer needs it.
Ensure that lazy parsing of the members of nominal type definitions
and extensions is handled through a request. Most of the effort here
is in establishing a new request zone for parser requests.
Note that in all cases it was either nullptr or ctx.getLazyResolver().
While passing in nullptr might appear at first glance to mean something
("don't type check anything"), in practice we would check for a nullptr
value and pull out ctx.getLazyResolver() instead. Furthermore, with
the lazy resolver going away (at least for resolveDeclSignature() calls),
it won't make sense to do that anymore anyway.
Instead of visiting all members of all types and extensions, bail out
early if the type is not a class or protocol, or the extension is not
extending a class. This means we don't visit structs, enums or
protocol extensions at all, which will avoid delayed parsing.
Also, we were evaluating isObjC() on each member, which is an expensive
operation; if the member does not have an explicit @objc we would still
have to check if it overrides an @objc method or witnesses an @objc
protocol requirement.
Since most members are not ever found by dynamic lookup, this is wasted
work. Instead, let's rely on AnyObject lookup filtering non-@objc
members at the call site, which it was already doing anyway.
To properly delay parsing type and extension bodies we need to know
which ones might contain nested operator and class definitions, since
they must be known upfront when building the global operator lookup
and AnyObject dispatch lookup tables, respectively.
To guess if the type contains operator definitions, we look for the
'func' keyword followed by an operator token.
To guess if the type contains class definitions, we look for the
'class' keyword.
For now, this information is recorded but not used. Subsequent commits
will make use of this information to delay parsing in more cases.
Introduce some template metaprogramming infrastructure to retrieve the
"nearest" source location to the inputs of a request, and use that to
provide default diagnoseCycle and noteCycleStep implementations. This
will help remove a bunch of boilerplate from new requests.
These can be recreated if needed in a client library. To do this, I've
added a new ConformanceLookupKind::NonInherited, which can also be
used elsewhere in the project where we're already filtering out
inherited conformances some other way.
Note that this doesn't drop inherited conformances from the entire
serialized interface, just from the list that a class explicitly
declares. They still get referenced sometimes.
rdar://problem/50541451 and possibly others