Textual module interfaces don't actually depend on SILGen, so we
shouldn't need to run SILGen (or serialize an entire binary module) if
we're just trying to emit a textual interface. On the other hand, if
we /are/ going to run SILGen and then SIL diagnostics, we shouldn't
delay those diagnostics by spending time emitting a textual interface,
or for that matter a TBD file.
Using this, update all the ModuleInterface tests that use
`-emit-module -o /dev/null` to use `-typecheck` instead, except for
those using `-merge-modules`.
No functionality change. Unfortunately we still need the flag in
SILModule itself because of the ability to create an empty SILModule
and parse SIL into it incrementally, which can happen before there's
a FileUnit to use as the associated DeclContext instead of a
CompilerInstance's main module.
This was only used by the integrated REPL, and is now a dead option.
The "StartElem" option for performTypeChecking is still used for
reading SIL files, which have AST and SIL blocks alternate.
* [TBDGen] Allow user-provided dylib version flags
This patch adds two frontend arguments, -tbd-compatibility-version and
-tbd-current-version, both of which accept SemVer versions.
These will show up in the generated TBD file for a given module as
current-version: 2.7
compatibility-version: 2.0
These flags both default to `1.0.0`.
* Reword some comments
* Add test for invalid version string
* Expand on comments for TBD flags
This was removed upstream in https://reviews.llvm.org/D47789 since the only
place this flag was used was in the windows implementation where the behavior
triggered by this could be hidden in the implementation instead of being an
argument. As such, this code doesn't compile on master-next.
Since this has an acceptable default argument given the current stable, we can
just fix this on master and everything will work.
rdar://42862352
This replaces the use of a Clang utility function that was
inexplicably a non-static member function of CompilerInstance. It
would be nice to sink this all the way to LLVM and share the
implementation across both projects, but the Clang implementation does
a handful of things we don't need, and it's hard to justify including
them in an LLVM-level interface. (I stared at
llvm/Support/FileSystem.h for a long time before giving up.)
Anyway, Serialization and FrontendTool both get their atomic writes
now without depending on Clang, and without duplicating the
scaffolding around the Clang API. We should probably adopt this for
all our output files.
No functionality change.
Continuing work from #18344, be more conservative about when we load
SwiftOnoneSupport. Specifically, -emit-silgen and -emit-sibgen, despite
not going through the SIL Optimizer, may silently introduce dependencies
on SwiftOnoneSupport.
Because we want to support the ability to posthumously compile SILGen
and SIBGen'd files with these implicit dependencies, and because SIL
is not yet capable of expressing the dependency itself, we must always
assume we need to load SwiftOnoneSupport.
Adds the -vfsoverlay frontend option that enables the user to pass
VFS overlay YAML files to Swift. These files define a (potentially
many-layered) virtual mapping on which we predicate a VFS.
Switch all input-based memory buffer reads in the Frontend to the new
FileSystem-based approach.
Introduces the -name-bind frontend action that is intended as an intermediary between the parse-only actions and a full typechecking pass. In this phase, module imports will be validated and resolved, making it possible to emit full make-style dependencies files among other things.
Note that all information available to a parse-only pass is available to name binding, but because it does not continue-on to typecheck input files, full semantic information is not.