Rather than outputting diagnostics and to stderr, output all the extra
information added when deserialization fatally fails to the pretty stack
trace instead. Since the pretty stack trace is added to crash logs, this
should avoid the dance of requesting the compiler output
- Moves the previous "**** DESERIALIZATION FAILURE ..." output to the
last pretty stack trace line
- Removes the module and compiler version notes added to the fatal
diagnostic
- Adds a new effective compiler version line for all frontend failure.
Somewhat duplicates the line from the driver, but adds in the
effective version
- Adds a new line for the full misc version of the module that failed.
May double up with previous "While reading from ..." lines that are
added in various deserialization methods, but better to have it
twice than not at all
Most invalid attributes are skipped from serialization entirely, but
custom attributes don't have their invalid bit set - the particular
custom attribute (eg. a property wrapper) is requested when needed and
skipped if invalid. Those checks can't set the invalid bit since the
attribute could be a different custom attribute (eg. a result builder).
It's currently not obvious in crash reports whether compiling with
errors is enabled or not. Since this option can make previously
"impossible" paths now possible, add a message to both the pretty stack
output and fatal deserialization diagnostics to point out that it is
enabled.
Mark imported `@completionHandlerAsync` attrs as
implicit, which avoids printing them in generated
interfaces. And for the sake of completion,
serialize the implicit bit in case it's used
elsewhere in the future.
To make sure we continue to print
`@completionHandlerAsync` attributes explicitly
written by the user in Swift, add a SourceKit
interface test.
Resolves rdar://76685011
In the added test case, the `typealias` refers to the `HiddenStruct` type in the private module, which is imported as `@_implementationOnly`. Because the import is `@_implementationOnly`, during deserialization, we don’t import the private module and hence any reference to the `HiddenStruct` type fails. In the common deserialization code path, this causes us to skip over the `typealias` member. However, when creating the protocol conformance, we assume that we can resolve the type to which the `typealias` refers and thus we are crashing.
If `LangOpts.EnableDeserializationRecovery` is set to `true`, we should do our best to recover from such failures so this patch makes the deserialization failure handling more graceful and resolve the right-hand side of the `typealias` as an `ErrorType`.
Fixes rdar://72891807
Instead, put the archetype->instrution map into SIlModule.
SILOpenedArchetypesTracker tried to maintain and reconstruct the mapping locally, e.g. during a use of SILBuilder.
Having a "global" map in SILModule makes the whole logic _much_ simpler.
I'm wondering why we didn't do this in the first place.
This requires that opened archetypes must be unique in a module - which makes sense. This was the case anyway, except for keypath accessors (which I fixed in the previous commit) and in some sil test files.
Since 865e80f9c4 we are keeping track of internal closure labels in the closure’s type. With this change, wer are also serializing them to the swiftmodules.
Furthermore, this change adjusts the printing behaviour to print the parameter labels in the swiftinterfaces.
Resolves rdar://63633158
Introduce the notion of global actor-qualified function types, e.g.,
@MainActor () -> Void
to describe synchronous functions that must execute on a particular
global actor.
Assuming that we don't typecheck a deserialized module, we don't
actually need the ExplicitCompletionHandlerIndex. We used this flag to
determine whether we could trust the number stored in the handler index
or just take the last parameter of the function we're attached to.
Since we only typecheck it before serialization, we can safely check
that the completion handler location is valid before choosing whether we
should trust it or not.
We can get the DeclName of the async function from the resolved function
decl itself, so we don't actually need to serialize it. This patch pulls
the declNameRef from the serialization.
This patch replaces the @hasAsyncAlternative attribute with
@completionHandlerAsync. The @completionHandlerAsync attribute takes the
function decl name of the async function and optionally the index of the
completion hander parameter in the function that it's attached to.
If the completion handler index is not provided, it's assumed to be the
last parameter in the parameter list.
We resolve the async function while typechecking the attribute. Before
resolving, we verify that the function the attribute is attached to
isn't async, that it has enough parameters to at least have the
indicated completion handler referenced by the index, that the
completion handler is an escaping non-auto-closure function that returns
Void.
The async function declaration resolution isn't perfect yet, but I want
to get this patch up and we can refine it later. It pulls all of the
delcs with the specified declname in the same context as the
function that the attribute is attached to. Going through that list, it
keeps any that are async functions. If there are none, we emit an error
saying that there are no viable functions, if there are multiple we emit
an error saying that the decl name is ambiguous, and if there is one
function, we keep that as the resolve async function declaration.
This does not take into account the data types of the completion handler
or the async function. There are some complexities to making this
mapping. Here are the pieces:
- If the completion handler takes a single data type, the async
function should return that type. (easy case)
- If the completion handler takes a `Result<T, Error>`, the async
function is a throwing function that returns a T. (Medium difficulty)
- If the completion handler looks like `(T?, Error?) -> Void`, we have
an ambiguous situation between the following async functions:
- func foo() async throws -> T
- func foo() async throws -> T?
That is, we cannot tell whether the `T?` in the completion handler is
optional because it will be nil on an error, or if it is intended to
be optional.
This can be done later if it becomes a problem.
47b068d445 output a diagnostic if a
deserialized decl was invalid (checking `Decl::isInvalid`). It had two
major issues:
1. It incorrectly output diagnostics for valid modules
2. It did not catch call invalid declarations
(1) is caused by `isInvalid` falling back to checking the storage for
accessors when the interface type hasn't already been computed (a
fallback to prevent a cycle due to `SimpleDidSetRequest` typechecking
the body). Since the `VarDecl` hasn't finished deserializing, it returns
`true` for its `isInvalid` check (even though it would later return
`false`).
For (2), only `ValueDecl`s would ever be invalid, since other
declarations use a bit in `Decl` to check for validity. As that's not
serialized, those would always be valid in deserialization.
To avoid both these issues, instead output a flag for each declaration
representing whether it is invalid (or not). Read that during
deserialization and output a diagnostic if it is invalid. To be extra
sure that a diagnostic is always output on an error, also output one
when deserializing any `ErrorType`. This ensures that SILGen does not
run when allowing errors (and an error is present), as it is likely to
crash when presented with an invalid AST.
Resolves rdar://74541834
Allow us to tag declarations that are meant to be in a global actor, but
for which we don't yet want to enforce everything. This will be used for
better staging-in of global actor annotations, but for now it's a fancy
way to document @actorIndependent(unsafe).
Stages in the syntax for rdar://74241687 without really implementing it.
This attribute marks a function has having an async alternative,
optionally providing the name of that function as a string. Intended to
be used to allow warnings when using a function with an async
alternative in an asynchronous context, to make the async refactorings
more accurate, and for documentation.
When running in the allow errors mode
(-experimental-allow-module-with-compiler-errors), modules may contain
invalid declarations. The rest of the compiler pipeline, however,
expects to have valid declarations unless diagnostics have emitted an
error. Emit an error while deserializing to maintain this assumption.
Note that these errors will not have a useful location, unless there's a
corresponding `.swiftsourceinfo`. This isn't a problem for the intended
use case in IDEs, where diagnostics outside the current file would be
ignored anyway.
Since reading declarations is lazy, SILGen (and thus SIL diagnostics)
can still run as long as any invalid declarations weren't referenced in
the compiling module.
Resolves rdar://74325388
When the requisite support in Clang for `__attribute__((swift_async_error))` parameters
lands, this will let us represent APIs that take completion handlers in the general shape
of `void (^)(BOOL, id, NSError*)`, where the boolean argument indicates the presence of
an error rather than the nilness of the `NSError*` argument.
This patch softly updates the spelling of actors from `actor class` to
`actor`. We still accept using `actor` as a modifying attribute of
class, but emit a warning and fix-it to make the change.
One of the challenges that makes this messier is that the modifier list
can be in any order. e.g, `public actor class Foo {}` is the same as
`actor public class Foo {}`.
Classes have been updated to include whether they were explicitly
declared as an actor. This change updates the swiftmodule serialization
version number to 0.591. The additional bit only gets set of the class
declaration was declared as an actor, not if the actor was applied as an
attribute. This allows us to correctly emit `actor class` vs `actor`
emitting the code back out.
Compiler:
- Add `Forward` and `Reverse` to `DifferentiabilityKind`.
- Expand `DifferentiabilityMask` in `ExtInfo` to 3 bits so that it now holds all 4 cases of `DifferentiabilityKind`.
- Parse `@differentiable(reverse)` and `@differentiable(_forward)` declaration attributes and type attributes.
- Emit a warning for `@differentiable` without `reverse`.
- Emit an error for `@differentiable(_forward)`.
- Rename `@differentiable(linear)` to `@differentiable(_linear)`.
- Make `@differentiable(reverse)` type lowering go through today's `@differentiable` code path. We will specialize it to reverse-mode in a follow-up patch.
ABI:
- Add `Forward` and `Reverse` to `FunctionMetadataDifferentiabilityKind`.
- Extend `TargetFunctionTypeFlags` by 1 bit to store the highest bit of differentiability kind (linear). Note that there is a 2-bit gap in `DifferentiabilityMask` which is reserved for `AsyncMask` and `ConcurrentMask`; `AsyncMask` is ABI-stable so we cannot change that.
_Differentiation module:
- Replace all occurrences of `@differentiable` with `@differentiable(reverse)`.
- Delete `_transpose(of:)`.
Resolves rdar://69980056.
Add @concurrent to SIL function types, mirroring what's available on
AST function types. @concurrent function types will have by-value
capture semantics.
Introduce `@concurrent` attribute on function types, including:
* Parsing as a type attribute
* (De-/re-/)mangling for concurrent function types
* Implicit conversion from @concurrent to non-@concurrent
- (De-)serialization for concurrent function types
- AST printing and dumping support
This PR makes it possible to instantiate C++ class templates from Swift. Given a C++ header:
```c++
// C++ module `ClassTemplates`
template<class T>
struct MagicWrapper {
T t;
};
struct MagicNumber {};
```
it is now possible to write in Swift:
```swift
import ClassTemplates
func x() -> MagicWrapper<MagicNumber> {
return MagicWrapper<MagicNumber>()
}
```
This is achieved by importing C++ class templates as generic structs, and then when Swift type checker calls `applyGenericArguments` we detect when the generic struct is backed by the C++ class template and call Clang to instantiate the template. In order to make it possible to put class instantiations such as `MagicWrapper<MagicNumber>` into Swift signatures, we have created a new field in `StructDecl` named `TemplateInstantiationType` where the typechecker stores the `BoundGenericType` which we serialize. Deserializer then notices that the `BoundGenericType` is actually a C++ class template and performs the instantiation logic.
Depends on https://github.com/apple/swift/pull/33420.
Progress towards https://bugs.swift.org/browse/SR-13261.
Fixes https://bugs.swift.org/browse/SR-13775.
Co-authored-by: Dmitri Gribenko <gribozavr@gmail.com>
Co-authored-by: Rosica Dejanovska <rosica@google.com>
Adds a new frontend option
"-experimental-allow-module-with-compiler-errors". If any compilation
errors occur while generating the .swiftmodule, this mode will skip SIL
entirely and only serialize the (likey invalid) AST.
This existence of this option during generation is serialized into the
resulting .swiftmodule. Errors found in deserialization are only allowed
if it is set.
Primarily intended for IDE requests (eg. indexing and code completion)
to ensure robust cross-module results, despite possible errors.
Resolves rdar://69815975
[broken] first impl of @actorIndependent in the type checker.
[broken] fixed mistake in my parsing code wrt invalid source range
[broken] found another spot where ActorIndependent needs custom handling
[broken] incomplete set of @actorIndependent(unsafe) tests
updates to ActorIndependentUnsafe
[fixed] add FIXME plus simple handling of IndependentUnsafe context
finished @actorIndependent(unsafe) regression tests
added wip serialization / deserialization test
focus test to just one actor class
round-trip serialize/deserialize test for @actorIndependent
serialize -> deserialize -> serialize -> compare to original
most of doug's comments
addressed robert's comments
fix printing bug; add module printing to regression test
[nfc] update comment for ActorIsolation::IndependentUnsafe