The difference with `ModuleFile` is that `ModuleFileSharedCore` provides immutable data and is independent of a particular ASTContext.
It is designed to be able to be shared across multiple `ModuleFile`s of different `ASTContext`s in a thread-safe manner.
* initial changes
* Add tests, undo unnecessary changes.
* Fixing up computed properties accessors and adding tests for getters.
* Adding nested type testcase
* Fixing error message for when accessor is referenced but not acutally found.
* Cleanup.
- Improve diagnostic message.
- Clean up code and tests.
- Delete unrelated nested type `@derivative` attribute tests.
* Temporarily disable class subscript setter derivative registration test.
Blocked by SR-13096.
* Adding libsyntax integration and fixing up an error message.
* Added a helper function for checking if the next token is an accessor label.
* Update utils/gyb_syntax_support/AttributeNodes.py
Co-authored-by: Dan Zheng <danielzheng@google.com>
* Update lib/Parse/ParseDecl.cpp
Co-authored-by: Dan Zheng <danielzheng@google.com>
* Add end-to-end derivative registration tests.
* NFC: run `git clang-format`.
* NFC: clean up formatting.
Re-apply `git clang-format`.
* Clarify parsing ambiguity FIXME comments.
* Adding couple of more testcases and fixing up error message for when accessor is not found on functions resolved.
* Update lib/Sema/TypeCheckAttr.cpp
Co-authored-by: Dan Zheng <danielzheng@google.com>
Co-authored-by: Dan Zheng <danielzheng@google.com>
`DifferentiableFunctionInst` now stores result indices.
`SILAutoDiffIndices` now stores result indices instead of a source index.
`@differentiable` SIL function types may now have multiple differentiability
result indices and `@noDerivative` resutls.
`@differentiable` AST function types do not have `@noDerivative` results (yet),
so this functionality is not exposed to users.
Resolves TF-689 and TF-1256.
Infrastructural support for TF-983: supporting differentiation of `apply`
instructions with multiple active semantic results.
When deserializing, we delay parenting
GenericTypeParamDecls until we install the
GenericParamList on the parent declaration, using
a dummy parent of the ModuleDecl until this
happens.
However when deserializing GenericTypeParamTypes,
we don't necessarily get the opportunity to
deserialize the parent, leaving them with the
dummy parent.
We should probably consider not deserializing
GenericTypeParamDecls at all, we currently only do
it to preserve the sugar of the name, this could
be serialized on the type instead.
For now though, adjust the dummy parent to be the
SerializedASTFile, and tell the ASTVerifier to
skip verification for such generic params.
We don't need to look at re-exports when resolving
cross references. Luckily the old lookup logic
didn't, but the new logic will. Therefore switch
it over to calling the appropriate request for a
direct operator lookup. In addition, return a
deserialization error instead of silently
returning nullptr if the lookup fails.
Store an array of Located<Identifier> instead of
an array of Identifiers and SourceLocs on
OperatorDecl. This allows us to cleanup
OperatorPrecedenceGroupRequest a little.
TBD was missing several opaque type descriptor symbols. The root causes
are: (1) the AST API called by TBD doesn't return opaque type decl if
the decl is from a serialized AST; and (2) the access level of opaque
type decl isn't serialized so TBD considers them as internal.
This change fixes both.
rdar://61833970
Start fixing SR-12526: `@derivative` attribute cross-module deserialization
crash. Remove original `AbstractFunctionDecl *` from `DerivativeAttr` and store
`DeclID` instead, mimicking `DynamicReplacementAttr`.
Type erasure requires a circular construction by its very nature:
@_typeEraser(AnyProto)
protocol Proto { /**/ }
public struct AnyProto : Proto {}
If we eagerly resolve AnyProto, the chain of resolution steps that
deserialization must make goes a little something like this:
Lookup(Proto)
-> Deserialize(@_typeEraser(AnyProto))
-> Lookup(AnyProto)
-> DeserializeInheritedStuff(AnyProto)
-> Lookup(Proto)
This cycle could be broken if the order of incremental inputs was
such that we had already cached the lookup of Proto.
Resolve this cycle in any case by suspending the deserialization of the
type eraser until the point it's demanded by adding
ResolveTypeEraserTypeRequest.
rdar://61270195
Several declarations must be at least partially deserialized before their names can be determined. Add those names to pretty stack traces to make deserialization crashes easier to debug.
We don’t test pretty stack traces, so this doesn’t contain any test changes.
Components of a requirement may be hidden behind an implementation-only
import. Attempts at deserializing them would fail on a 'module not
loaded' error. We only see failures in non-compilation paths, either in
indexing or with tools like ide-test as they try to deserialize
things that are private.
Serialize "is linear?" flag, differentiability parameter indices, and
differentiability generic signature.
Deserialization has some ad-hoc logic for setting the original declaration and
parameter indices for `@differentiable` attributes because
`DeclDeserializer::deserializeDeclAttributes` does not have access to the
original declaration.
Resolves TF-836.
In order to allow this, I've had to rework the syntax of substituted function types; what was previously spelled `<T> in () -> T for <X>` is now spelled `@substituted <T> () -> T for <X>`. I think this is a nice improvement for readability, but it did require me to churn a lot of test cases.
Distinguishing the substitutions has two chief advantages over the existing representation. First, the semantics seem quite a bit clearer at use points; the `implicit` bit was very subtle and not always obvious how to use. More importantly, it allows the expression of generic function types that must satisfy a particular generic abstraction pattern, which was otherwise impossible to express.
As an example of the latter, consider the following protocol conformance:
```
protocol P { func foo() }
struct A<T> : P { func foo() {} }
```
The lowered signature of `P.foo` is `<Self: P> (@in_guaranteed Self) -> ()`. Without this change, the lowered signature of `A.foo`'s witness would be `<T> (@in_guaranteed A<T>) -> ()`, which does not preserve information about the conformance substitution in any useful way. With this change, the lowered signature of this witness could be `<T> @substituted <Self: P> (@in_guaranteed Self) -> () for <A<T>>`, which nicely preserves the exact substitutions which relate the witness to the requirement.
When we adopt this, it will both obviate the need for the special witness-table conformance field in SILFunctionType and make it far simpler for the SILOptimizer to devirtualize witness methods. This patch does not actually take that step, however; it merely makes it possible to do so.
As another piece of unfinished business, while `SILFunctionType::substGenericArgs()` conceptually ought to simply set the given substitutions as the invocation substitutions, that would disturb a number of places that expect that method to produce an unsubstituted type. This patch only set invocation arguments when the generic type is a substituted type, which we currently never produce in type-lowering.
My plan is to start by producing substituted function types for accessors. Accessors are an important case because the coroutine continuation function is essentially an implicit component of the function type which the current substitution rules simply erase the intended abstraction of. They're also used in narrower ways that should exercise less of the optimizer.
We saw this failure with a Clang module imported @_implementationOnly
with synthesized conformances by the ClangImporter. It caused
issues only in sil-opt as it reads all the witness tables.
rdar://problem/58924131
This cleanup exposed a problem with deserialization recovery and
property wrappers. If deserializing a property backed by a wrapper
failed, the lazy member lookup would fail, but subsequently a
loadAllMembers() call would still load the property.
This behavior is actually incorrect, because silently dropping a
stored property of a @frozen struct can result in miscompiles.
I've filed rdar://59403542 and rdar://59403617 to track fixing this.
In the meantime, I've tweaked the logic a bit to preserve the old
behavior.
Remove the option to switch off nested types tables. In a world where
re-entrant direct lookup will cause deserialization to fail (or worse),
disabling these tables will only lead to further instability in the
compiler.
As part of this, we have to change the type export rules to
prevent `@convention(c)` function types from being used in
exported interfaces if they aren't serializable. This is a
more conservative version of the original rule I had, which
was to import such function-pointer types as opaque pointers.
That rule would've completely prevented importing function-pointer
types defined in bridging headers and so simply doesn't work,
so we're left trying to catch the unsupportable cases
retroactively. This has the unfortunate consequence that we
can't necessarily serialize the internal state of the compiler,
but that was already true due to normal type uses of aggregate
types from bridging headers; if we can teach the compiler to
reliably serialize such types, we should be able to use the
same mechanisms for function types.
This PR doesn't flip the switch to use Clang function types
by default, so many of the clang-function-type-serialization
FIXMEs are still in place.
Add another cross-cutting module configuration to the nested types table
search path. A module can have no overlay but also contain a nested
types table suitable for finding a given member name. UIKit is the
sharpest example of this state of affairs. UIKit currently defines an
overlay in Swift where we find some nested types. But it also defines
an inner module that has some other nested types tables.
Resolves rdar://58940989
The current way that VarDecl::isLazilyInitializedGlobal() is implemented does
not work in the debugger, since the DeclContext of all VarDecls are deserialized
Swift modules. By adding a bit to the VarDecl we can recover the fact that a
VarDecl was in fact a global even in the debugger.
<rdar://problem/58939370>
The `@noDerivative` attribute marks the non-differentiability parameters of a
`@differentiable` function type. All parameters except those marked with
`@noDerivative` are differentiability parameters.
For example, `@differentiable (Float, @noDerivative Float) -> Float` is only
differentiable with respect to its first parameter.
The `@noDerivative` attribute is represented as a
`SILParameterDifferentiability` bit on `SILParameterInfo`.
Add round-trip serialization tests.
Resolves TF-872.
Motivation: `GenericSignatureImpl::getCanonicalSignature` crashes for
`GenericSignature` with underlying `nullptr`. This led to verbose workarounds
when computing `CanGenericSignature` from `GenericSignature`.
Solution: `GenericSignature::getCanonicalSignature` is a wrapper around
`GenericSignatureImpl::getCanonicalSignature` that returns the canonical
signature, or `nullptr` if the underlying pointer is `nullptr`.
Rewrite all verbose workarounds using `GenericSignature::getCanonicalSignature`.