isResilient(ModuleDecl, ResilienceExpansion).
isResilient() returns the decl's resilience by definition
and should not be altered whether bypassing optimization
is enabled or not. The overloaded isResilient(ModuleDecl..)
is used for accessing a decl from a client module, which is
the appropriate place to opt in for non-resilience in package.
Resolves rdar://123031292
[transferring] Implement transferring result and clean up transferring param support by making transferring a bit on param instead of a ParamSpecifier.
Instead it is a bit on ParamDecl and SILParameterInfo. I preserve the consuming
behavior by making it so that the type checker changes the ParamSpecifier to
ImplicitlyCopyableConsuming if we have a default param specifier and
transferring is set. NOTE: The user can never write ImplicitlyCopyableConsuming.
NOTE: I had to expand the amount of flags that can be stored in ParamDecl so I
stole bits from TypeRepr and added some logic for packing option bits into
TyRepr and DefaultValue.
rdar://121324715
The reason why I am doing this is that I am going to be changing transferring to
not be a true ParamSpecifier. Instead, it is going to be a bit on Param that
changes the default ParamSpecifier used. That being said, I cannot use consuming
for this purpose since consuming today implies no implicit copy semantics, which
we do not want unless the user specifically asks for it by writing consuming.
By default package decls are treated as resilient, similar to public (non-frozen).
This PR adds support to allow direct access to package decls at use site if opted-in.
Requires the loaded module to be a binary module in the same package.
Resolves rdar://121626315
An @_objcImpl extension with no category name *should* implement not only the class’s main @interface, but also any class extension @interfaces. Start making this true by making ObjCInterfaceAndImplementationRequest return all of these decls as the interfaces for such an implementation.
This commit doesn’t actually change Sema or IRGen to process the extra interfaces, so it’s NFC.
Previously, if a request R evaluated itself N times, we would emit N
"circular reference" diagnostics. These add no value, so instead let's
cache the user-provided default value on the first circular evaluation.
This changes things slightly so that instead of returning an
llvm::Expected<Request::OutputType>, various evaluator methods take
a callback which can produce the default value.
The existing evaluateOrDefault() interface is unchanged, and a new
evaluateOrFatal() entry point replaces
llvm::cantFail(ctx.evaluator(...)).
Direct callers of the evaluator's operator() were updated to pass in
the callback. The benefit of the callback over evaluateOrDefault() is
that if the default value is expensive to constuct, like a dummy
generic signature, we will only construct it in the case where a
cycle actually happened, otherwise we just delete the callback.
(cherry picked from commit b8fcf1c709efa6cd28e1217bd0efe876f7c0d2b7)
Test shadowed variable of same type
Fully type check caller side macro expansion
Skip macro default arg caller side expr at decl primary
Test macro expand more complex expressions
Set synthesized expression as implicit
Add test case for with argument, not compiling currently
Test with swiftinterface
Always use the string representation of the default argument
Now works across module boundary
Check works for multiple files
Make default argument expression work in single file
Use expected-error
Disallow expression macro as default argument
Using as a sub expression in default argument still allowed as expression macros behave the same as built-in magic literals
When the Swift module is not available, we'll synthesize the
Copyable/Escapable decls into the Builtin module.
In the future, it might be nice to just do this always, and define
typealiases for those types in the stdlib to refer to the ones in the
builtin module.