Diagnosis for invalid uses of trailing closures has been folded in
with argument-matching diagnostics, so remove all of the machinery
around the syntactic "mismatched trailing closure" logic.
The change to the forward-scanning rule regressed some diagnostics,
because we no longer generated the special "trailing closure mismatch"
diagnostic. Reinstate the special-case "trailing closure mismatch"
diagnostic, but this time do so as part of the normal argument
mismatch diagnostics so it is based on type information.
While here, clean up the handling of missing-argument diagnostics to
deal with (multiple) trailing closures properly, so that we can (e.g)
suggest adding a new labeled trailing closure at the end, rather than
producing nonsensical Fix-Its.
And, note that SR-12291 is broken (again) by the forward-scan matching
rules.
VarPattern is today used to implement both 'let' and 'var' pattern bindings, so
today is already misleading. The reason why the name Var was chosen was done b/c
it is meant to represent a pattern that performs 'variable binding'. Given that
I am going to add a new 'inout' pattern binding to this, it makes sense to
give it now a better fitting name before I make things more confusing.
* [TypeCheckConstraints] Adjusting cases where checked casts that cannot be determined statically were producing misleading warnings
* [tests] Adding regression tests for SR-13088
* [TypeCheckConstraints] Adjusting comment and adding an extra test case for SR13035
* [TypeCheckConstraints] Fixing typos in comments
* [AST] Moving implementation of isCollection from ConstraintSystem to AST TypeBase
* [TypeCheckConstraints] Adjusting logic to verify specific conformance to stdlib collection type before emit an downcast warning
* [TypeCheckConstraints] Creating new CheckedCastContextKind::CollectionElement to be able to verify special cases within typeCheckCheckedCast for collection elements
* [TypeCheckConstraints] Adjusting logic around generic substitution to check both subtype and supertype
* [Sema] Adding isKnownStdlibCollectionType and replacing all usages contraint system method
* [TypeChecker] Reverting fixes around array element types
* [TypeChecker] Abstract logic of check for conditional requirements on TypeChecker::couldDynamicallyConformToProtocol
* [TypeChecker] Ajdustinc can conformDynamically conform and adjust review comments
* [TypeChecker] Ajusting comments and fixing typos
* [TypeChecker] Adjusting existential and archetype logic to check inside couldDynamicConform
* [TypeChecker] Adjusting minor and adding existential check into couldDynamically conform.
* [TypeChecker] Adjusting comments
* [CSDiagnostics] Adjusting MemberAccessOnOptionalBaseFailure to be able to handle key path component member base types
* [tests] Adding regression tests for SR-5688
* [CSDiagnostics] Adjusting source range to diagnose/insert the fixes in correct location
* [tests] Adjusting regression tests to handle the fixits
* [AST] Creating an helper getSourceRange function for KeyPathExpr::Component
* [ConstraintSystem] Store member base type when recording UnwrapOptionalBase fix
* [AST] Creating a new diagnostic note for removing optional from written type
* [CSDiagnostics] Adjusting logic around MemberAccessOnOptionalBaseFailure to emit the correct diagnostics and fixes
* [tests] Adjusting regression tests to add subscript and key path root cases with respective diagnostics
* [Diagnostics] Adjusting message to mention base type
* [CSDiagnostics] Better naming for method/variable that represents base source range
* [CSDiagnostics] Adjusting to use the stored base member only when member is a key path component.
* [Diagnostics] Adjusting minor typos and code
* [AST] Adjusting keypath root diagnostic note message for use unwrapped type
* [CSDiagnostics] Adjusments in MemberAccessOnOptionalBaseFailure diagnostics as per suggestion
* [tests] Adding more test cases for SR-5688
* [CSDiagnostics] Adjusting fixits for key path root and range for diagnostics
* [CSSimplify] Attempt to diagnose InsertExplicitCall for optional function return types when possible on simplifyOptionalObjectConstraint
* [tests] Adding TODO to improve the diagnostics refering to key path root infered as optional types
* [CSDiagnostics] Adjusting comments
* [CSSimplify] Adjusting logic on simplifyOptionalObjectConstraint to attempt InsertCall fix before remove unwrap
* [CSDiagnostics] Adjust the logic to use resolveType on MemberAccessOnOptionalBaseFailure construction
If the problem is related to an operator and argument is an enum
with associated values mention that conformances to `Equatable`
and `Comparable` are not synthesized in such cases.
Single-expression closures have always been traversed differently
from multi-statement closures. The former were traversed as if the
expression was their only child, skipping the BraceStmt and implicit
return, while the later was traversed as a normal BraceStmt.
Unify on the latter treatment, so that traversal
There are a few places where we unintentionally relied on this
expression-as-child behavior. Clean those up to work with arbitrary
closures, which is an overall simplification in the logic.
Diagnose an attempt to pass raw representable type where its raw value
is expected instead.
```swift
enum E : Int {
case one = 1
}
let _: Int = E.one
```
`E.one` has to use `.rawValue` to match `Int` expected by pattern binding.
Diagnose an attempt to initialize raw representable type or convert to it
a value of some other type that matches its `RawValue` type.
```swift
enum E : Int {
case a, b, c
}
let _: E = 0
```
`0` has to be wrapped into `E(rawValue: 0)` and either defaulted via `??` or
force unwrapped to constitute a valid binding.
In situations where left-hand side requires value-to-optional
promotion which ends up in type mismatch let's not mention
optionals in the diagnostic because they are unrelated e.g.
```swift
func test(_: UnsafePointer<Int>??) {}
var value: Float = 0
test(&value)
```
In this example `value` gets implicitly wrapped into a double optional
before `UnsafePointer<Float>` could be matched against `UnsafePointer<Int>`
associated with the parameter.
Diagnostic is about generic argument mismatch `Float` vs. `Int`
and shouldn't mention any optionals.
If closure is an argument to a call to a missing member or invalid
contextual member reference let's not diagnose problems related to
inability to infer parameter types because root issue is that context
for closure inference couldn't be established.