* [Diagnostics] Experimental diagnostic printing updates
This new style directly annotates small snippets of code with
error messages, highlights and fix-its. It also uses color more
effectively to highlight important segments.
* [Diagnostics] Stage educational notes and experimental formatting behind separate frontend flags
educational notes -> -enable-educational-notes
formatting -> -enable-experimental-diagnostic-formatting
* [Diagnostics] Refactor expensive line lookups in diag formatting
* [Diagnostics] Refactor some PrintingDiagnosticConsumer code into a flush method
* [Diag-Experimental-Formatting] Custom formatting for Xcode editor placeholders
* [Diag-Experimental-Formatting] Better and more consistent textual description of fix its
* [Diags-Experimental-Formatting] Handle lines with tab characters correctly when rendering highlights and messages
Tabs are converted to 2 spaces for display purposes.
* [Diag-Experimental-Formatting] Refactor byte-to-column mapping for efficiency
* [Diag-Experimental-Formatting] Fix line number indent calculation
* [Diag-Experimental-Formatting] Include indicators of insertions and deletions in the highlight line
Inserts are underlined by green '+' chars, deletions by red '-' chars.
* [Diag-Experimental-Formatting] Change color of indicator arrow for non-ASCII anchored messages
* [Diag-experimental-formatting] Make tests less sensitive to line numbering
* [Diag-Experimental-Formatting] Update tests to allow windows path separators
* [Diag-Experimental-Formatting] Bug fixes for the integrated REPL
This allows the usage of the whole remark infrastructure developed in
LLVM, which includes a new binary format, metadata in object files, etc.
This gets rid of the YAMLTraits-based remark serialization and does the
plumbing for hooking to LLVM's main remark streamer.
For more about the idea behind LLVM's main remark streamer, see the
docs/Remarks.rst changes in https://reviews.llvm.org/D73676.
The flags are now:
* -save-optimization-record: enable remarks, defaults to YAML
* -save-optimization-record=<format>: enable remarks, use <format> for
serialization
* -save-optimization-record-passes <regex>: only serialize passes that
match <regex>.
The YAMLTraits in swift had a different `flow` setting for the debug
location, resulting in some test changes.
Regardless of any flags, the stdlib will have its generic metadata
prespecialized.
Temporarily reintroduced the flag to enable the feature flag while
preserving the flag to disable it and changed the default back to off
for the moment.
Static-linked libraries could add symbols to the final tbd file. We need
this flag to specify additional module names to collect symbols from.
rdar://59399684
Previously, -Xfrontend -prespecialize-generic-metadata had to be passed
in order for generic metadata to be prespecialized. Now it is
prespecialized unless -Xfrontend
-disable-generic-metadata-prespecialization is passed.
Add support in the driver and frontend for macCatalyst target
targets and library search paths.
The compiler now adds two library search paths for overlays when compiling
for macCatalyst: one for macCatalyst libraries and one for zippered macOS
libraries. The macCatalyst path must take priority over the normal macOS path
so that in the case of 'unzippered twins' the macCatalyst library is
found instead of the macOS library.
To support 'zippered' builds, also add support for a new -target-variant
flag. For zippered libraries, the driver invocation takes both a -target and a
-target-variant flag passes them along to the frontend. We support builds both
when the target is a macOS triple and the target variant is macCatalyst and
also the 'reverse zippered' configuration where the target is macCatalyst and the
target-variant is macOS.
Add an extra phase after all the argument parsing has completed that sets inter-option-dependent flags. This allows for the const-qualification of IRGenOptions, and removes some weird state flipping in FrontendTool.
Using the new linker directives $ld$previous requires the compiler to know the previous
install names for the symbols marked as removed. This patch teaches the compiler
to take a path to a Json file specifying the map between module names and previous
install names. Also, these install names can be platform-specific.
Progress towards: rdar://58281536
Restructure fine-grained-dependencies to enable unit testing
Get frontend to emit correct swiftdeps file (fine-grained when needed) and only emit dot file for -emit-fine-grained-dependency-sourcefile-dot-files
Use deterministic order for more information outputs.
Set EnableFineGrainedDependencies consistently in frontend.
Tolerate errors that result in null getExtendedNominal()
Fix memory issue by removing node everywhere.
Break up print routine
Be more verbose so it will compile on Linux.
Sort batchable jobs, too.
The new frontend flag -prespecialize-generic-metadata must be passed in
order for generic metadata to be specialized statically.
rdar://problem/56984885
This reverts commit e805fe486e, which reverted
the change earlier. The problem was caused due to a simultaneous change to some
code by the PR with parsing and printing for Clang function types (#28737)
and the PR which introduced Located<T> (#28643).
This commit also includes a small change to make sure the intersecting region
is fixed: the change is limited to using the fields of Located<T> in the
`tryParseClangType` lambda.
Restructure fine-grained-dependencies to enable unit testing
Get frontend to emit correct swiftdeps file (fine-grained when needed) and only emit dot file for -emit-fine-grained-dependency-sourcefile-dot-files
Use deterministic order for more information outputs.
Set EnableFineGrainedDependencies consistently in frontend.
Tolerate errors that result in null getExtendedNominal()
Fix memory issue by removing node everywhere.
Break up print routine
Be more verbose so it will compile on Linux.
Sort batchable jobs, too.
This is primarily meant to used for testing LLDB's DWARFImporterDelegate,
however, this could become the default option for LLDB once
DWARFImporterDelegate is sufficiently mature.
<rdar://problem/57880844>
This is a first version of cross module optimization (CMO).
The basic idea for CMO is to use the existing library evolution compiler features, but in an automated way. A new SIL module pass "annotates" functions and types with @inlinable and @usableFromInline. This results in functions being serialized into the swiftmodule file and thus available for optimizations in client modules.
The annotation is done with a worklist-algorithm, starting from public functions and continuing with entities which are used from already selected functions. A heuristic performs a preselection on which functions to consider - currently just generic functions are selected.
The serializer then writes annotated functions (including function bodies) into the swiftmodule file of the compiled module. Client modules are able to de-serialize such functions from their imported modules and use them for optimiations, like generic specialization.
The optimization is gated by a new compiler option -cross-module-optimization (also available in the swift driver).
By default this option is off. Without turning the option on, this change is (almost) a NFC.
rdar://problem/22591518
Note: The change in ASTBuilder::createFunctionType is functionally minor,
but we need the FunctionType::Params computed _before_ the ExtInfo, so we
need to shuffle a bunch of code around.