"Private Intransitive Dependencies" differ from the status quo by no
longer requiring the concept of a "cascading dependency edge". This is
because the request evaluator automatically tracks, records, and replays
the names looked up while a given file is being processed by the
frontend. To remove transitivity from the swiftdeps files, each
primary file processed by the Swift frontend is charged for *all* name
lookups that occur while it is being processed. Further, because of
the replay step, lookups hidden behind cached requests are now entirely
visible to the dependency tracking code.
The net result is that all formerly implicit transitivity in the
dependency graph has been made completely explicit and direct. This
establishes a tighter overall dependency structure for each individual
file, and results in a remarkable decrease in the amount of
files that are rebuilt for any particular change.
This feature can be disabled via
-disable-experimental-private-intransitive-dependencies, which will
cause a return to the cascading status quo.
Lift the `DisablePoundIfEvaluation` parsing option
into `LangOptions` to subsume the need for the
`EvaluateConditionals` parameter, and sink the
computation of `CanDelayBodies` down into
`createSourceFileForMainModule`.
Introduce an experimental mode (behind the flag
`experimental-one-way-closure-params`) that places one-way
constraints between closure parameter types and references to those
parameters within the body of the closure. The intent here is to
break up constraint systems further, potentially improving type
checking performance and making way for larger closure bodies to be
supported.
This is a source-breaking change when the body of a single-expression
closure is used to determine the parameter types. One obvious example
is when there is no contextual type, e.g.,
let _ = { $0 + 1 }
this type-checks today because `1` becomes `Int`, which matches the
`+` overload with the type `(Int, Int) -> Int`, determining the
parameter type `Int` for the closure. Such code would not type-check
with one-way constraints.
While refactoring in 48805b1, I accidentally added the computation of this bit before CompilerInstance::setupInputs is called. This means that the compiler currently does not have any knowledge of any primary input buffers, and thus the check for whole module mode is trivially true. As a consequence, this bit has been true ever since.
Since we seem to have got on just fine without computing this correctly, just inline that truthiness everywhere.
Whoops
Move the playground and debugger transforms out
of the Frontend and into `performTypeChecking`, as
we'd want them to be applied if
`performTypeChecking` was called lazily.
Teach the driver to pass the SDK version it computes (from the SDK
settings JSON in a Darwin-based platform's SDK) down into the frontend.
The frontend then sets that SDK version in the LLVM module, which
eventually makes its way into the Mach-O file.
Last part of rdar://problem/60332732.
The differentiation transform does the following:
- Canonicalizes differentiability witnesses by filling in missing derivative
function entries.
- Canonicalizes `differentiable_function` instructions by filling in missing
derivative function operands.
- If necessary, performs automatic differentiation: generating derivative
functions for original functions.
- When encountering non-differentiability code, produces a diagnostic and
errors out.
Partially resolves TF-1211: add the main canonicalization loop.
To incrementally stage changes, derivative functions are currently created
with empty bodies that fatal error with a nice message.
Derivative emitters will be upstreamed separately.
Request-based incremental dependencies are enabled by default. For the time being, add a flag that will turn them off and switch back to manual dependency tracking.
Add `AdditiveArithmetic` derived conformances for structs, gated by the
`-enable-experimential-additive-arithmetic-derivation` flag.
Structs whose stored properties all conform to `AdditiveArithmetic` can derive
`AdditiveArithmetic`:
- `static var zero: Self`
- `static func +(lhs: Self, rhs: Self) -> Self`
- `static func -(lhs: Self, rhs: Self) -> Self`
- An "effective memberwise initializer":
- Either a synthesized memberwise initializer or a user-defined initializer
with the same type.
Effective memberwise initializers are used only by derived conformances for
`Self`-returning protocol requirements like `AdditiveArithmetic.+`, which
require memberwise initialization.
Resolves TF-844.
Unblocks TF-845: upstream `Differentiable` derived conformances.
There were a couple of methods in LangOptions and some related ones in
Availability and ASTContext that were added more recently.
Refactor the three older checks to the newer scheme.
Add support for conditional compilation under macCatalyst
Developers can now detect whether they are compiling for macCatalyst at
compile time with:
#if targetEnvironment(macCatalyst)
// Code only compiled under macCatalyst.
#end
Add support in the driver and frontend for macCatalyst target
targets and library search paths.
The compiler now adds two library search paths for overlays when compiling
for macCatalyst: one for macCatalyst libraries and one for zippered macOS
libraries. The macCatalyst path must take priority over the normal macOS path
so that in the case of 'unzippered twins' the macCatalyst library is
found instead of the macOS library.
To support 'zippered' builds, also add support for a new -target-variant
flag. For zippered libraries, the driver invocation takes both a -target and a
-target-variant flag passes them along to the frontend. We support builds both
when the target is a macOS triple and the target variant is macCatalyst and
also the 'reverse zippered' configuration where the target is macCatalyst and the
target-variant is macOS.
Restructure fine-grained-dependencies to enable unit testing
Get frontend to emit correct swiftdeps file (fine-grained when needed) and only emit dot file for -emit-fine-grained-dependency-sourcefile-dot-files
Use deterministic order for more information outputs.
Set EnableFineGrainedDependencies consistently in frontend.
Tolerate errors that result in null getExtendedNominal()
Fix memory issue by removing node everywhere.
Break up print routine
Be more verbose so it will compile on Linux.
Sort batchable jobs, too.
Restructure fine-grained-dependencies to enable unit testing
Get frontend to emit correct swiftdeps file (fine-grained when needed) and only emit dot file for -emit-fine-grained-dependency-sourcefile-dot-files
Use deterministic order for more information outputs.
Set EnableFineGrainedDependencies consistently in frontend.
Tolerate errors that result in null getExtendedNominal()
Fix memory issue by removing node everywhere.
Break up print routine
Be more verbose so it will compile on Linux.
Sort batchable jobs, too.
The platform versions are really only used on Darwin platforms.
Simplify the path by defaulting to `0.0.0` on all platforms, and
handling the version number on supported platforms.
Note: The change in ASTBuilder::createFunctionType is functionally minor,
but we need the FunctionType::Params computed _before_ the ExtInfo, so we
need to shuffle a bunch of code around.