Code may end up indirectly using a witness table for a Clang-imported type by inlining code that used the conformance from another module, in which case we need to ensure we have a local definition at hand in the inlining module so we can have something to link against independently. This needs to be fixed from both sides:
- During serialization, serialize not only witness tables from the current module, but from Clang-imported modules too
- During deserialization, when the SILLinker walks a loaded module, ensure that all shared conformances get deserialized, including those from ApplyInsts and inherited/associated type protocol requirements.
Fixes rdar://problem/38687726.
Code may end up indirectly using a witness table for a Clang-imported type by inlining code that used the conformance from another module, in which case we need to ensure we have a local definition at hand in the inlining module so we can have something to link against independently. This needs to be fixed from both sides:
- During serialization, serialize not only witness tables from the current module, but from Clang-imported modules too, so that their definitions can be used by other modules that inline code from the current module
- During IRGen, when we emit a reference to a SILWitnessTable or SILFunction declaration with shared linkage, attempt to deserialize the definition on demand
Fixes rdar://problem/38687726.
This patch moves the ownership of profiling state from SILGenProfiling
to SILFunction, where it always belonged. Similarly, it moves ownership
of the profile reader from SILGenModule to SILModule.
The refactor sets us up to fix a few outstanding code coverage bugs and
does away with sad hacks like ProfilerRAII. It also allows us to locally
guarantee that a profile counter increment actually corresponds to the
SILFunction at hand.
That local guarantee causes a bugfix to accidentally fall out of this
refactor: we now set up the profiling state for delayed functions
correctly. Previously, we would set up a ProfilerRAII for the delayed
function, but its counter increment would never be emitted :(. This fix
constitutes the only functional change in this patch -- the rest is NFC.
As a follow-up, I plan on removing some dead code in the profiling
logic and fixing a few naming inconsistencies. I've left that for later
to keep this patch simple.
This patch moves the ownership of profiling state from SILGenProfiling
to SILFunction, where it always belonged. Similarly, it moves ownership
of the profile reader from SILGenModule to SILModule.
The refactor sets us up to fix a few outstanding code coverage bugs and
does away with sad hacks like ProfilerRAII. It also allows us to locally
guarantee that a profile counter increment actually corresponds to the
SILFunction at hand.
That local guarantee causes a bugfix to accidentally fall out of this
refactor: we now set up the profiling state for delayed functions
correctly. Previously, we would set up a ProfilerRAII for the delayed
function, but its counter increment would never be emitted :(. This fix
constitutes the only functional change in this patch -- the rest is NFC.
As a follow-up, I plan on removing some dead code in the profiling
logic and fixing a few naming inconsistencies. I've left that for later
to keep this patch simple.
This brings the capability from clang to save remarks in an external YAML files.
YAML files can be viewed with tools like the opt-viewer.
Saving the remarks is activated with the new option -save-optimization-record.
Similarly to -emit-tbd, I've only added support for single-compile mode for now.
In this case the default filename is determined by
getOutputFilenameFromPathArgOrAsTopLevel, i.e. unless explicitly specified
with -save-optimization-record-path, the file is placed in the directory of the
main output file as <modulename>.opt.yaml.
The `serialize` method can be called multiple times, but it will perform the actual serialization only the first time.
By means of this API we get the flexibility to serialize the SILModule not only after all the optimizations, but e.g. at any time during optimizations.
introduce a common superclass, SILNode.
This is in preparation for allowing instructions to have multiple
results. It is also a somewhat more elegant representation for
instructions that have zero results. Instructions that are known
to have exactly one result inherit from a class, SingleValueInstruction,
that subclasses both ValueBase and SILInstruction. Some care must be
taken when working with SILNode pointers and testing for equality;
please see the comment on SILNode for more information.
A number of SIL passes needed to be updated in order to handle this
new distinction between SIL values and SIL instructions.
Note that the SIL parser is now stricter about not trying to assign
a result value from an instruction (like 'return' or 'strong_retain')
that does not produce any.
- SILSerializeAll flag is now stored in the SILOptions and passed around as part of it
- Explicit SILSerializeAll/wholeModuleSerialized/makeModuleFragile API parameters are removed in many places
AccessMarkerElimination now registers a callback so that any subsequently
deserialized function bodies will have access markers stripped for optimization.
rdar:31908496 Assertion failed: (isa<X>(Val) && "cast<Ty>() argument of
incompatible type!") in SILPerformanceInliner
- Separate out a uniquable KeyPathPattern that describes the context-free shape of the key path, with generic parameters and (eventually) subscript index slots factored out.
- Add component kinds for gettable and settable properties.
Previously we would drop all serialized SIL from partial swiftmodule
files generated while compiling source in non-WMO mode; all that was
missing was linking it in.
This adds a frontend flag, and a test; driver change is coming up
next.
Progress on <rdar://problem/18913977>.
Also, add a third [serializable] state for functions whose bodies we
*can* serialize, but only do so if they're referenced from another
serialized function.
This will be used for bodies synthesized for imported definitions,
such as init(rawValue:), etc, and various thunks, but for now this
change is NFC.
We didn’t do that if an optimization looked up a witness table.
Fixes rdar://problem/30544344
I couldn’t come up with an isolated test case, but this should be covered with our existing tests.
(The problem shows up when inlining of generics are enabled)
This reverts commit 1b3d29a163, reversing
changes made to b32424953e.
We're seeing a handful of issues from turning on inlining of generics,
so I'm reverting to unblock the bots.
In all cases the DeclCtx field was supposed to be initialized from the
SILLocation of the function, so we can save one pointer per
SILFunction.
There is one test case change where a different (more precise)
diagnostic is being generated after this change.
A witness table is dead if it is not used outside the module (private/internal) and it’s not used by any instruction or other witness table in the module.
Also the meta-type of the conforming type must not escape, because it’s possible to test any opaque type if it conforms to a protocol.
rdar://problem/23026019
Trying to contain it in SIL doesn't really work if we want to be able to print or parse SIL box types, since the type parser and printer doesn't otherwise depend on the SIL module.
Previously I was going to just set a flag and run the verifier once with that
flag enabled. Then I realized that given that the OwnershipModelEliminator is a
function pass, I really need to put the state on whether or not ownership is
enabled on functions. Now this commit refactors the verifier to use the state on
the function when determining if it should allow for ownership qualified
instructions or not in a specific function.
rdar://28685236
This gives us a concept we can eventually use to cache the lowered physical layout of fragile structs and classes, and more immediately, concretize the layout of closure boxes in a way that lets us represent the capture of generic environments and multiple captured values without compromising the "nominal" nature of box layouts. To start exercising the basic implementation, change the representation of SILBoxType to be in terms of a SILLayout, though avoid any immediate functionality change by preserving the single-boxed-type interface for now.