Getting the protocols of an arbitrary type doesn't make sense, so start phasing this out by introducing specialized entry points that do make sense:
- get the inherited protocols of a ProtocolDecl
- get the conforming protocols for an associated type or generic
type parameter
- (already present) ask for the protocols to which a nominal type conforms
Swift SVN r26411
The commit fixes availability Fix-Its on enum elements to suggest a new availability
attribute on the enum case (which is where attributes live in concrete syntax) rather than
on the enum element (which is where they are attached in the abstract syntax tree).
Swift SVN r26401
We explicitly whitelist these "stdlib private" decls in interface
generation, because they may contain methods that users are required to
implement. But in code-completion, there's no good reason to show them.
We still show completions for the methods themselves if you complete on
a public protocol that inherits from the private protocol. So,
<complete> => doesn't show _CollectionType
let a: CollectionType = ...
a.<complete> => *does* show startIndex, which comes from _CollectionType
rdar://problem/20086106
Swift SVN r26355
We now access the conformances of a nominal type through the
conformance lookup table, so there is no reason to continue storing
conformances directly on the nominal type declaration, which was
error-prone regardless. This mirrors the change to ExtensionDecl from
my previous commit.
Swift SVN r26354
Stop storing a conformances array on ExtensionDecls. Instead, always use the conformance lookup table to retrieve conformances (which is lazy and supports multi-file, among other benefits).
As part of this, space-optimize ExtensionDecl's handling of conformance loaders. When one registers a conformance loader, it goes into a DenseMap on ASTContext and gets erased once we've loaded that data, so we get two words worth of space back in each ExtensionDecl.
Swift SVN r26353
This simplifies and isolates the "deep conformance checking" behavior
of LazyResolver::checkConformance (renamed from
LazyResolver::resolveConformance). We actually don't want to be
triggering this from lookup, because it's exceedingly non-lazy, but
our lazy resolution of witnesses isn't good enough to support that
just yet. NFC
Swift SVN r26319
Replace the loop over all known protocols with a query into the
actual conformance lookup table, which more properly deals with
out-of-order conformance queries, inheritance of protocol
conformances, and conformance queries in multi-file situtations.
The SILGen test change is because we're no longer emitting redundant
conformances, while the slight diagnostic regression in
circular-inheritance cases is because we handle circular inheritance
very poorly throughout the compiler.
While not the end, this is a major step toward finishing
rdar://problem/18448811.
Swift SVN r26299
This lets us tag imported declarations with arbitrary synthesized
protocols. Use it to handle imported raw option sets as well as the
RawRepresentable conformances of enums that come in as structs.
Swift SVN r26298
We're still not using these generated conformances as our primary
source of conformances, but now we can create them here and it doesn't
break anything.
Swift SVN r26297
This flag indicates that internal APIs within the module should be made
available to client code for testing purposes. Currently does nothing.
Not ready for developer consumption yet, ergo a hidden frontend-only flag.
Part of testability (rdar://problem/17732115)
Swift SVN r26292
- Add frontend and standard library build support for tvOS.
- Add frontend support for watchOS.
watchOS standard library builds are still disabled during SDK bring-up.
To build for TVOS, specify --tvos to build-script.
To build for watchOS, specify --watchos to build-script (not yet supported).
This patch does not include turning on full tests for TVOS or watchOS, and
will be included in a follow-up patch.
Swift SVN r26278
Previously, we would require the type checker to be able to build a
conformance, which meant we would actually have to lie in the AST
about having a conformance (or crash; we did the form). Now, we can
form the conformance in the AST and it will be checked in the type
checker when needed. The intent here is to push conformance creation
into the conformance lookup table.
To get here, we had to stop relying on the broken, awful,
ASTContext-wide conformance "cache". A proper cache can come back once
the model is sorted out.
Swift SVN r26250
Allows us to distinguish between "we know this conformance exists" and
"we're doing a detailed check of this conformance". Use it, rather
than membership in the nebulous ASTContext-wide caching structure
"ConformsTo", to detect recursive attempts to complete a conformance.
Swift SVN r26248
Instead of relying on Sema to set the existential-conforms-to-self bit, compute it lazily in the AST. This is far cleaner and more dependable than the previous solution.
Swift SVN r26225
Previously, a multi-pattern var/let decl like:
var x = 4, y = 17
would produce two pattern binding decls (one for x=4 one for y=17). This is convenient
in some ways, but is bad for source reproducibility from the ASTs (see, e.g. the improvements
in test/IDE/structure.swift and test/decl/inherit/initializer.swift).
The hardest part of this change was to get parseDeclVar to set up the AST in a way
compatible with our existing assumptions. I ended up with an approach that forms PBDs in
more erroneous cases than before. One downside of this is that we now produce a spurious
"type annotation missing in pattern"
diagnostic in some cases. I'll take care of that in a follow-on patch.
Swift SVN r26224
If the placeholder is a typed one, parse its type string into a TypeRepr,
resolve it during typechecking and set it as the type for the associated EditorPlaceholderExpr.
Swift SVN r26215
The deallocating parameter convention is a new convention put on a
non-trivial parameter if the caller function guarantees to the callee
that the parameter has the deallocating bit set in its object header.
This means that retains and releases do not need to be emitted on these
parameters even though they are non-trivial. This helps to solve a bug
in +0 self and makes it trivial for the optimizer to perform
optimizations based on this property.
It is not emitted yet by SILGen and will only be put on the self
argument of Deallocator functions.
Swift SVN r26179
- Rename getParentPattern() -> getParentPatternBinding(), since
it returns the pattern binding, not the pattern.
- Introduce new getParentPattern()/getParentInitializer() methods,
covering the most common uses of getParentPatternBinding().
NFC.
Swift SVN r26175
This changes 'if let' conditions to take general refutable patterns, instead of
taking a irrefutable pattern and implicitly matching against an optional.
Where before you might have written:
if let x = foo() {
you now need to write:
if let x? = foo() {
The upshot of this is that you can write anything in an 'if let' that you can
write in a 'case let' in a switch statement, which is pretty general.
To aid with migration, this special cases certain really common patterns like
the above (and any other irrefutable cases, like "if let (a,b) = foo()", and
tells you where to insert the ?. It also special cases type annotations like
"if let x : AnyObject = " since they are no longer allowed.
For transitional purposes, I have intentionally downgraded the most common
diagnostic into a warning instead of an error. This means that you'll get:
t.swift:26:10: warning: condition requires a refutable pattern match; did you mean to match an optional?
if let a = f() {
^
?
I think this is important to stage in, because this is a pretty significant
source breaking change and not everyone internally may want to deal with it
at the same time. I filed 20166013 to remember to upgrade this to an error.
In addition to being a nice user feature, this is a nice cleanup of the guts
of the compiler, since it eliminates the "isConditional()" bit from
PatternBindingDecl, along with the special case logic in the compiler to handle
it (which variously added and removed Optional around these things).
Swift SVN r26150
conjunction with .fixItInsert(). As such, introduce a helper named
.fixItInsertAfter() that does what we all want. Adopt this in various
places around the compiler. NFC.
Swift SVN r26147
It causes some fails in compiler_crashers:
Swift :: compiler_crashers/0986-swift-unboundgenerictype-get.swift
Swift :: compiler_crashers/1103-swift-unboundgenerictype-get.swift
Swift :: compiler_crashers/1223-swift-lexer-leximpl.swift
Swift :: compiler_crashers/1276-swift-metatypetype-get.swift
Swift :: compiler_crashers/1287-swift-printingdiagnosticconsumer-handlediagnostic.swift
Swift SVN r26136
When we check a protocol conformance, we recurse to check the implied
protocol conformances for inherited protocols first. When doing so, we
were passing down the current DeclContext, which would force the
creation of a new conformance to that protocol within that
DeclContext. This isn't what we want: we want to find or create the
conformance in whichever context it naturally belongs.
This is a partial step toward solving the problem, which eliminates
the duplicate witness tables from the example in
rdar://problem/18182969. However, we're still not using the
conformance lookup table to decide where the witness tables/protocol
conformances go, which means the actual declaration context for a
witness table is still a bit ad hoc.
Baby steps.
Swift SVN r26129
When code completing a literal expr, it is likely that code completion engine only collects the expr
that is not fully type checked. Therefore, no members of the literal can be suggested. To address this,
we try to climb up expr hierarchy in AST to find an expr with a nominal type, and use the nominal type
to finish code completion.
rdar://20059173
Swift SVN r26116
This is effectively NFC, but we had two implementations of "figure out
the protocols that this type should implicitly conform to". The one in
the conformance table is what will matter going forward.
Swift SVN r26115
The conformance lookup table should ask for registration, it should
*know* what the conformances will be based on the form of the AST. NFC
Swift SVN r26114
For now, we assume that 'while' after the braces starts
a do/while rather than being an independent statement.
We should disambiguate this, or better, remove do/while.
Tests later.
Swift SVN r26079
(Note that this registry isn't fully enabled yet; it's built so that
we can test it, but has not yet taken over the primary task of
managing conformances from the existing system).
The conformance registry tracks all of the protocols to which a
particular nominal type conforms, including those for which
conformance was explicitly specified, implied by other explicit
conformances, inherited from a superclass, or synthesized by the
implementation.
The conformance registry is a lazily-built data structure designed for
multi-file support (which has been a problematic area for protocol
conformances). It allows one to query for the conformances of a type
to a particular protocol, enumerate all protocols to which a type
conforms, and enumerate all of the conformances that are associated
with a particular declaration context (important to eliminate
duplicated witness tables).
The conformance registry diagnoses conflicts and ambiguities among
different conformances of the same type to the same protocol. There
are three common cases where we'll see a diagnostic:
1) Redundant explicit conformance of a type to a protocol:
protocol P { }
struct X : P { }
extension X : P { } // error: redundant explicit conformance
2) Explicit conformance to a protocol that collides with an inherited
conformance:
protocol P { }
class Super : P { }
class Sub : Super, P { } // error: redundant explicit conformance
3) Ambiguous placement of an implied conformance:
protocol P1 { }
protocol P2 : P1 { }
protocol P3 : P1 { }
struct Y { }
extension Y : P2 { }
extension Y : P3 { } // error: ambiguous implied conformance to 'P1'
This happens when two different explicit conformances (here, P2 and
P3) placed on different declarations (e.g., two extensions, or the
original definition and other extension) both imply the same
conformance (P1), and neither of the explicit conformances imply
each other. We require the user to explicitly specify the ambiguous
conformance to break the ambiguity and associate the witness table
with a specific context.
Swift SVN r26067