Test shadowed variable of same type
Fully type check caller side macro expansion
Skip macro default arg caller side expr at decl primary
Test macro expand more complex expressions
Set synthesized expression as implicit
Add test case for with argument, not compiling currently
Test with swiftinterface
Always use the string representation of the default argument
Now works across module boundary
Check works for multiple files
Make default argument expression work in single file
Use expected-error
Disallow expression macro as default argument
Using as a sub expression in default argument still allowed as expression macros behave the same as built-in magic literals
Now that the macro expansion machinery is wrapping the contents of a
body macro in curly braces, parse it as a single brace statement. This
has the advantage of giving us real locations for `{` and `}` rather
than synthesizing them, and simplifies the implementation of macro
body expansion somewhat.
Function body macros allow one to introduce a function body for a
particular function, either providing a body for a function that
doesn't have one, or wholesale replacing the body of a function that
was written with a new one.
Function bodies are skipped during typechecking when one of the
-experimental-skip-*-function-bodies flags is passed to the frontend. This was
implemented by setting the "body kind" of an `AbstractFunctionDecl` during decl
checking in `TypeCheckDeclPrimary`. This approach had a couple of issues:
- It is incompatible with skipping function bodies during lazy typechecking,
since the skipping is only evaluated during a phase of eager typechecking.
- It prevents skipped function bodies from being parsed on-demand ("skipped" is
a state that is distinct from "parsed", when they ought to be orthogonal).
This needlessly prevented complete module interfaces from being emitted with
-experimental-skip-all-function-bodies.
Storing the skipped status of a function separately from body kind and
requestifying the determination of whether to skip a function solves these
problems.
Resolves rdar://116020403
This is phase-1 of switching from llvm::Optional to std::optional in the
next rebranch. llvm::Optional was removed from upstream LLVM, so we need
to migrate off rather soon. On Darwin, std::optional, and llvm::Optional
have the same layout, so we don't need to be as concerned about ABI
beyond the name mangling. `llvm::Optional` is only returned from one
function in
```
getStandardTypeSubst(StringRef TypeName,
bool allowConcurrencyManglings);
```
It's the return value, so it should not impact the mangling of the
function, and the layout is the same as `std::optional`, so it should be
mostly okay. This function doesn't appear to have users, and the ABI was
already broken 2 years ago for concurrency and no one seemed to notice
so this should be "okay".
I'm doing the migration incrementally so that folks working on main can
cherry-pick back to the release/5.9 branch. Once 5.9 is done and locked
away, then we can go through and finish the replacement. Since `None`
and `Optional` show up in contexts where they are not `llvm::None` and
`llvm::Optional`, I'm preparing the work now by going through and
removing the namespace unwrapping and making the `llvm` namespace
explicit. This should make it fairly mechanical to go through and
replace llvm::Optional with std::optional, and llvm::None with
std::nullopt. It's also a change that can be brought onto the
release/5.9 with minimal impact. This should be an NFC change.
Allow freestanding macros to be used at top-level.
- Parse top-level `#…` as `MacroExpansionDecl` when we are not in scripting mode.
- Add macro expansion decls to the source lookup cache with name-driven lazy expansion. Not supporting arbitrary name yet.
- Experimental support for script mode and brace-level declaration macro expansions: When type-checking a `MacroExpansionExpr`, assign it a substitute `MacroExpansionDecl` if the macro reference resolves to a declaration macro. This doesn’t work quite fully yet and will be enabled in a future fix.
Global peer macro expansions are not injected into the AST. Instead, they
are visited as "auxiliary declarations" when needed, such as in the decl
checker and during SILGen. This is the same mechanism used for local property
wrappers and local lazy variables.
Once an accessor macro has produced accessors, parse them and wire them
into the AST so the rest of the compiler will see them. First
end-to-end test case!
Each macro expansion buffer was getting parsed twice: once by
ParseSourceFileRequest (which is used by unqualified name lookup) and
once to parse the expression when type-checking the expanded macro.
This meant that the same code had two ASTs. Hilarity ensures.
Stop directly invoking the parser on macro-expanded code. Instead, go
through ParseSourceFileRequest *as is always the right way*, and dig
out the expression we want.
Replace the use of the "consistency check" vended by swift-syntax with
an ASTGen-implemented operation that emits diagnostics from the new parser
via the normal diagnostic engine. This eliminates our last dependency
on SwiftCompilerSupport, so stop linking it.
In the Swift grammar, the top-level of a source file is a mix of three
different kinds of "items": declarations, statements, and expressions.
However, the existing parser forces all of these into declarations at
parse time, wrapping statements and expressions in TopLevelCodeDecls,
so the primary API for getting the top-level entities in source files
is based on getting declarations.
Start generalizing the representation by storing ASTNode instances at
the top level, rather than declaration pointers, updating many (but
not all!) uses of this API. The walk over declarations is a (cached)
filter to pick out all of the declarations. Existing parsed files are
unaffected (the parser still creates top-level code declarations), but
the new "macro expansion" source file kind skips creating top-level
code declarations so we get the pure parse tree. Additionally, some
generalized clients (like ASTScope lookup) will now look at the list
of items, so they'll be able to walk into statements and expressions
without the intervening TopLevelCodeDecl.
Over time, I'd like to phase out `getTopLevelDecls()` entirely,
relying on the new `getTopLevelItems()` for parsed content. We can
introduce TopLevelCodeDecls more lazily for semantic walks.
Allow user-defined macros to be loaded from dynamic libraries and evaluated.
- Introduce a _CompilerPluginSupport module installed into the toolchain. Its `_CompilerPlugin` protocol acts as a stable interface between the compiler and user-defined macros.
- Introduce a `-load-plugin-library <path>` attribute which allows users to specify dynamic libraries to be loaded into the compiler.
A macro library must declare a public top-level computed property `public var allMacros: [Any.Type]` and be compiled to a dynamic library. The compiler will call the getter of this property to obtain and register all macros.
Known issues:
- We current do not have a way to strip out unnecessary symbols from the plugin dylib, i.e. produce a plugin library that does not contain SwiftSyntax symbols that will collide with the compiler itself.
- `MacroExpansionExpr`'s type is hard-coded as `(Int, String)`. It should instead be specified by the macro via protocol requirements such as `signature` and `genericSignature`. We need more protocol requirements in `_CompilerPlugin` to handle this.
- `dlopen` is not secure and is only for prototyping use here.
Friend PR: apple/swift-syntax#1022
If we had a structural overflow, don't perform round-trip testing. The
new parser currently fails, and will need to deal with the problem in
a more appropriate manner than the existing one, which cuts off lexing entirely.
Remove the CMake configuration option `SWIFT_SWIFT_PARSER_ROUNDTRIP`.
Instead, whenever the "early" SwiftSyntax module is built, link the
Swift Swift parser into the compiler and related tools.
Introduce a new experimental feature `ParserRoundTrip` that can be
enabled to perform round-trip testing.
When enabled, compile in support for round-trip testing the new
SwiftSyntax-provided Swift parser alongside the existing parser. Right
now, this means parsing every source file with the new parser and
ensuring that the resulting syntax tree can reproduce the input source
precisely. Over time, this is expected to grow.
Opt in to this behavior by passing the following to build-script:
build-script --early-swiftsyntax --extra-cmake-options=-DSWIFT_SWIFT_PARSER_MODE:STRING=ROUNDTRIP
We'd like to support factor initializers
for distributed actor types that are
synthesized by SILGen.
We already do something similar for
memberwise initializers for structs.
Thus, this patch generalizes that
concept into a new BodyKind for
AbstractFunctionDecls called
BodyKind::SILSynthesize.
In addition, to help differentiate the
kinds of AFDs that are SILSynthesized
into different families for SILGen to
recognize, we also have a new enum
SILSynthesizeKind to indicate whether it
is a memberwise init, etc.
Cross-module incremental builds require a stable source of fingerprint
information for iterable decl contexts. This is provided by the
incremental frontends when they produce partial swift module files.
Embedded in these files is a table of fingerprints, which are consumed
by merge-modules to construct a module-wide dependency graph that is
then serialized into the final merged swift module file. Unfortunately,
the implementation here iterated through the files in the module and
asked for the first fingerprint that would load for a particular
iterable decl context. If (more likely, when) the DeclID for that
serialized iterable decl context collided with another DeclID in the
wrong file, we would load that fingerprint instead.
Locate up to the module-scope context for an iterable decl context and
only load the fingerprint from there. This ensures that the fingerprints
in the partial modules matches the fingerprints in the merged modules.
rdar://77005039
Provide an accessor for retrieving the parsed members, generalizing
`ParseMembersRequest` so it can provide the parsed members for
deserialized/synthesized declarations as well. This is the counterpart
to the recently-generalized `getSemanticMembers()`; together, these
should suffice for most (all?) clients of `getMembers()`.
Currently when parsing a SourceFile, the parser
gets handed pointers so that it can write the
interface hash and collected tokens directly into
the file. It can also call `setSyntaxRoot` at
the end of parsing to set the syntax tree.
In preparation for the removal of
`performParseOnly`, this commit formalizes these
values as outputs of `ParseSourceFileRequest`,
ensuring that the file gets parsed when the
interface hash, collected tokens, or syntax tree
is queried.
Split off the notion of "recording" dependencies from the notion of
"collecting" dependencies. This corrects an oversight in the previous
design where dependency replay and recording were actually not "free" in
WMO where we actually never track dependencies. This architecture also
lays the groundwork for the removal of the referenced name trackers.
The algorithm builds upon the infrastructure for dependency sources and
sinks laid down during the cut over to request-based dependency tracking
in #30723.
The idea of the naive algorithm is this:
For a chain of requests A -> B* -> C -> D* -> ... -> L where L is a lookup
request and all starred requests are cached, once L writes into the
dependency collector, the active stack is walked and at each cache-point
the results of dependency collection are associated with the request
itself (in this example, B* and D* have all the names L found associated
with them). Subsequent evaluations of these cached requests (B* and D*
et al) will then *replay* the previous lookup results from L into the
active referenced name tracker. One complication is, suppose the
evaluation of a cached request involves multiple downstream name
lookups. More concretely, suppose we have the following request trace:
A* -> B -> L
|
-> C -> L
|
-> D -> L
|
-> ...
Then A* must see the union of the results of each L. If this reminds
anyone of a union-find, that is no accident! A persistent union-find
a la Conchon and Filliatre is probably in order to help bring down peak
heap usage...
Define a new type DependencyCollector that abstracts over the
incremental dependency gathering logic. This will insulate the
request-based name tracking code from future work on private,
intransitive dependencies.