An awful pattern we use throughout the compiler is to save and restore global flags just for little things. In this case, it was just to turn on some extra options in AST printing for type variables. The kicker is that the ASTDumper doesn't even respect this flag. Add this as a PrintOption and remove the offending save-and-restores.
This doesn't quite get them all: we appear to have productized this pattern in the REPL.
Diagnose ephemeral conversions that are passed to @_nonEphemeral
parameters. Currently, this defaults to a warning with a frontend flag
to upgrade to an error. Hopefully this will become an error by default
in a future language version.
This non-user-facing attribute is used to denote pointer parameters
which do not accept pointers produced from temporary pointer conversions
such as array-to-pointer, string-to-pointer, and in some cases
inout-to-pointer.
By convention, most structs and classes in the Swift compiler include a `dump()` method which prints debugging information. This method is meant to be called only from the debugger, but this means they’re often unused and may be eliminated from optimized binaries. On the other hand, some parts of the compiler call `dump()` methods directly despite them being intended as a pure debugging aid. clang supports attributes which can be used to avoid these problems, but they’re used very inconsistently across the compiler.
This commit adds `SWIFT_DEBUG_DUMP` and `SWIFT_DEBUG_DUMPER(<name>(<params>))` macros to declare `dump()` methods with the appropriate set of attributes and adopts this macro throughout the frontend. It does not pervasively adopt this macro in SILGen, SILOptimizer, or IRGen; these components use `dump()` methods in a different way where they’re frequently called from debugging code. Nor does it adopt it in runtime components like swiftRuntime and swiftReflection, because I’m a bit worried about size.
Despite the large number of files and lines affected, this change is NFC.
"Condition" path element is used to represent a condition expression
associated with `if` expression or ternary operator `? :`.
Locator has been changed in the way that it's now anchored from `if`
itself which simplifies down to condition expression it needed.
This commit replaces the `getValue()` and `getValue2()` members on
`ConstraintLocator::PathElement` with specific accessors for each
expected path component kind. IMO this adds some clarity to the call
sites, especially for `getArgIdx()` and `getParamIdx()`.
In addition, this commit adds a private `getValue` member that can
access a value at a given index, which will make it easier to add a
third value in the future.
Instead of keeping two locators in the fix let's store only the
original locator and simplify it later in process of emitting
a diagnostic. That helps to avoid some duplicate work as well
as makes sure that locators supplied to the diagnostic always
have an anchor.
Resolves: rdar://problem/53344815
We would previously fail to match something like (C<$T1> & P) against
(C<Int> & P) when the constraint kind was <= Subtype, because we would
fall back to a type equality test in that case.
However, this was only valid for protocol compositions without superclass
constraints since the superclass could contain a type variable on one
side of the constraint.
Fix this by adding support for protocol composition types to
matchDeepEqualityTypes().
It's only needed in one place in the constraint solver to allow
`() -> T` to `() -> ()` and `() -> Never` to `() -> T` for expressions
representing return of a single expression functions, so to simplify
contextual type handling in diagnostic and other places it would be
better to replace dedicated locator kind with a flag on existing `ContextualType`.
Resolves: rdar://problem/51641323
KeyPath dynamic member lookup is limited to what key path itself
could do, so let's detect and diagnose invalid references just
like we do for regular key path expressions.
Resolves: rdar://problem/50376224
New locator is going to store pointer to the base keypath declaration.
This information is useful to determine whether such keypath is appropriate
to access underlying properties/subscripts e.g. `WritableKeyPath` cannot be
used to access read-only storage.
There's no need to instantiate archetypes in the generic environment
of the declaration being opened.
A couple of diagnostics changed. They were already misleading, and the
new diagnostics, while different, are not any more misleading than
before.
Previously we would generate the following constraint here, where
'index' and 'output' are concrete types and $input is a type
variable:
- ValueMember(base, $input -> output)
- ArgumentTupleConversion(index, $input)
The problem is that we built a function type where the entire input
was a type variable, which would then bind to an argument list.
We could instead generate this constraint:
- ValueMember(base, $member)
- ApplicableFunction(index -> output, $member)
I also had to redo how keypaths map locators back to key path
components. Previously the ArgumentTupleConversion was created
with a locator ending in KeyPathComponent.
Now the ApplicableFunction is created with this locator, which means
the argument match is performed with a locator ending in
ApplyArgument.
A consequence of this is that the SubscriptIndex and SubscriptResult
locator path elements are no longer used, so remove them.
This requires various mechanical changes in places we look at
locators to handle this change. Should be NFC.
Having requirement kind encoded in the locator helps to identify
what kind of fix to generate (applicable to same-type, superclass)
without retrieving requirement itself.
This either became dead shortly after the removal of Swift 3
compatibility mode from the constraint solver, or even earlier.
Note that the code completion test change is actually correct
because (Any) -> () is not convertible to () -> () in the
language.
so that they must result in an optional type.
Add constraint locator path for identifying constraints/variables that are part of the convert type passed into the system.
8271c1a removed the last hacky usage of ArrayElementType,
leaving behind just the @lvalue-to-inout conversions. Rename
the locator path element to reflect this and do a bit of cleanup on the
unrelated-but-near-enough other hack RValueAdjustment.
Disallow implicit conversion or arguments from Array, String, and
InOut (formed by &) to pointer types if the argument is for an
@autoclosure parameter.
These conversions were really only intended to be used for C/ObjC
interop, and in some contexts like autoclosures they are not safe.
Fixes: rdar://problem/31538995