We were recovering metadata from generic boxes by reading
the instantiated payload metadata from the box's metadata,
but this approach doesn't work for fixed-size boxes, whose
metadata does not store the payload metadata at all.
Instead, emit a capture descriptor with no metadata sources
and a single capture, using the lowered AST type appearing
in the alloc_box instruction that emitted the box.
Since box metadata is shared by all POD types of the same
size, and all single-retainable pointer payloads, the
AST type might not accurately reflect what is actually in
the box.
However, this type is *layout compatible* with the box
payload, at least enough to know where the retainable
pointers are, because after all IRGen uses this type to
synthesize the destructor.
Fixes <rdar://problem/26314060>.
Now we can discern the types of values in heap boxes at runtime!
Closure reference captures are a common way of creating reference
cycles, so this provides some basic infrastructure for detecting those
someday.
A closure capture descriptor has the following:
- The number of captures.
- The number of sources of metadata reachable from the closure.
This is important for substituting generics at runtime since we
can't know precisely what will get captured until we observe a
closure.
- The number of types in the NecessaryBindings structure.
This is a holding tank in a closure for sources of metadata that
can't be gotten from the captured values themselves.
- The metadata source map, a list of pairs, for each
source of metadata for every generic argument needed to perform
substitution at runtime.
Key: The typeref for the generic parameter visible from the closure
in the Swift source.
Value: The metadata source, which describes how to crawl the heap from
the closure to get to the metadata for that generic argument.
- A list of typerefs for the captured values themselves.
Follow-up: IRGen tests for various capture scenarios, which will include
MetadataSource encoding tests.
rdar://problem/24989531
Properly lower reference counting SIL instructions with nonatomic attribute as invocations of corresponding non-atomic reference counting runtime functions.
Each runtime function definition in RuntimeFunctions.def states which calling convention
should be used for this runtime function. But IRGen and LLVMPasses were not always
properly propagating this declared calling convention all the way down to llvm's Call instructions.
In many cases, the standard C convention was set for the call irrespective of the actual calling
convention defined for a given runtime function. As a result, incorrect code was generated.
This commit tries to fix all those places, where such a mismatch was found. In many cases this is
achieved by defining a helper function CreateCall in such a way that makes sure that the call instruction
gets the same calling convention as the one used by its callee operand.
In a few places, we have to be careful about the distinction between
"empty in this resilience domain" versus "empty in all resilience
domains". Make callers think about this by adding a parameter instead
of relying on them to check isFixedSize() as necessary first.
While making this change I noticed that the code for checking if
types are empty when computing extra inhabitants of structs and enums
might be slightly wrong in the face of resilience; I will revisit
this later.
This lets us remove `swift_fixLifetime` as a real runtime entry point. Also, avoid generating the marker at all if the LLVM ARC optimizer won't be run, as in -Onone or -disable-llvm-arc-optimizer mode.
A single extra inhabitant is good enough for the most important case,
that being a single level of optionality. Otherwise, we want to
reserve maximal flexibility for the implementation.
This commit also fixes a bug where I was not correctly defining
the extra-inhabitant rules for all of the existential cases.
This is a bit of a hodge-podge of related changes that I decided
weren't quite worth teasing apart:
First, rename the weak{Retain,Release} entrypoints to
unowned{Retain,Release} to better reflect their actual use
from generated code.
Second, standardize the names of the rest of the entrypoints around
unowned{operation}.
Third, standardize IRGen's internal naming scheme and API for
reference-counting so that (1) there are generic functions for
emitting operations using a given reference-counting style and
(2) all operations explicitly call out the kind and style of
reference counting.
Finally, implement a number of new entrypoints for unknown unowned
reference-counting. These entrypoints use a completely different
and incompatible scheme for working with ObjC references. The
primary difference is that the new scheme abandons the flawed idea
(which I take responsibility for) that we can simulate an unowned
reference count for ObjC references, and instead moves towards an
address-only scheme when the reference might store an ObjC reference.
(The current implementation is still trivially takable, but that is
not something we should be relying on.) These will be tested in a
follow-up commit. For now, we still rely on the bad assumption of
reference-countability.
The swift_unknown* entry points are not available on the Linux port.
Previously we would still attempt to use them in a couple of cases:
1) Foreign classes
2) Existentials and archetypes
3) Optionals of boxed existentials
Note that this patch changes IRGen to never emit the
swift_errorRelease/Retain entry points on Linux. We would like to
use them in the future if we ever adopt a tagged-pointer representation
for small errors. In this case, they can be brought back, and the
TypeInfo for optionals will need to be generalized to propagate the
reference counting of the payload type, instead of defaulting to
unknown if the payload type is not natively reference counted.
A similar change will need to be made to support blocks, if we ever
want to use the blocks runtime on Linux.
Fixes <rdar://problem/23335318>, <rdar://problem/23335537>,
<rdar://problem/23335453>.
some of the ARC entry points. rdar://22724641. After this commit,
swift_retain_noresult will be completely replaced by swift_retain.
LLVMARCOpts pass is modified NOT to rewrite swift_retain to
swift_retain_noresult which forward no reference.
Swift SVN r32082
I asked that the patches were split up so I could do post commit review.
This reverts commit r32059.
This reverts commit r32058.
This reverts commit r32056.
This reverts commit r32055.
Swift SVN r32060
to remove reference forwarding for some of the ARC entry points. rdar://22724641. After this
commit, swift_retain_noresult will be completely replaced by swift_retain and LLVMARCOpts.cpp
will no longer canonicalize swift_retain to swift_retain_noresult as now swift_retain returns no
reference.
Swift SVN r32058
dealloc_ref [destructor] is the existing behavior. It expects the
reference count to have reached zero and the isDeallocating bit to
be set.
The new [constructor] variant first drops the initial strong
reference.
This allows DI to properly free uninitialized instances in
constructors. Previously this would fail with an assertion if the
runtime was built with debugging enabled.
Progress on <rdar://problem/21991742>.
Swift SVN r31142
Should be %swift.opaque*, or whatever the empty type claims as its storage type, not a pointer to the box type itself. Fixes rdar://problem/21597855.
Swift SVN r29795
When producing TypeInfo for a box, try to reuse instantiations for common type structures:
- any POD type with the same stride and alignment can share a fixed HeapLayout;
- any single-refcounted-pointer type can share a fixed HeapLayout with types that have the same ReferenceCounting;
- dynamically-sized types can share a runtime-based box implementation.
For the runtime implementation, use new to-be-implemented variants of allocBox/deallocBox that will produce polymorphically-projectable boxes using instantiated metadata.
Swift SVN r29612
functions to create load/store instructions without alignment.
Fix a couple of places that were unnecessarily using this.
This includes patching up some very suspicious code for generating
"shadow copies" of explosions for debug info that's not using
the existing TypeInfo-based load/store facilities for some
reason; I left the existing pattern in place for now, but it's
probably bogus.
Swift SVN r29459
Using LLVM large integers to represent enum payloads has been causing compiler performance and code size problems with large types, and has also exposed a long tail of backend bugs. Replace them with an "EnumPayload" abstraction that manages breaking a large opaque binary value into chunks, along with masking, testing, and extracting typed data from the binary blob. For now, use a word-sized chunking schema always, though the architecture here is set up to eventually allow the use of an arbitrary explosion schema, which would benefit single-payload enums by allowing the payload to follow the explosion schema of the contained value.
This time, adjust the assertion in emitCompare not to perform a check before we've established that the payload is empty, since APInt doesn't have a 0-bit state and the default-constructed form is nondeterminisitic. (We should probably use a more-tailored representation for enum payload bit patterns than APInt or ClusteredBitVector.)
Swift SVN r28985
Using LLVM large integers to represent enum payloads has been causing compiler performance and code size problems with large types, and has also exposed a long tail of backend bugs. Replace them with an "EnumPayload" abstraction that manages breaking a large opaque binary value into chunks, along with masking, testing, and extracting typed data from the binary blob. For now, use a word-sized chunking schema always, though the architecture here is set up to eventually allow the use of an arbitrary explosion schema, which would benefit single-payload enums by allowing the payload to follow the explosion schema of the contained value.
Swift SVN r28982
All llvm::Functions created during IRGen will have target-cpu and target-features
attributes if they are non-null.
Update testing cases to expect the attribute in function definition.
Add testing case function-target-features.swift to verify target-cpu and
target-features.
rdar://20772331
Swift SVN r28186
Preparation to fix <rdar://problem/18151694> Add Builtin.checkUnique
to avoid lost Array copies.
This adds the following new builtins:
isUnique : <T> (inout T[?]) -> Int1
isUniqueOrPinned : <T> (inout T[?]) -> Int1
These builtins take an inout object reference and return a
boolean. Passing the reference inout forces the optimizer to preserve
a retain distinct from what’s required to maintain lifetime for any of
the reference's source-level copies, because the called function is
allowed to replace the reference, thereby releasing the referent.
Before this change, the API entry points for uniqueness checking
already took an inout reference. However, after full inlining, it was
possible for two source-level variables that reference the same object
to appear to be the same variable from the optimizer's perspective
because an address to the variable was longer taken at the point of
checking uniqueness. Consequently the optimizer could remove
"redundant" copies which were actually needed to implement
copy-on-write semantics. With a builtin, the variable whose reference
is being checked for uniqueness appears mutable at the level of an
individual SIL instruction.
The kind of reference count checking that Builtin.isUnique performs
depends on the argument type:
- Native object types are directly checked by reading the
strong reference count:
(Builtin.NativeObject, known native class reference)
- Objective-C object types require an additional check that the
dynamic object type uses native swift reference counting:
(Builtin.UnknownObject, unknown class reference, class existential)
- Bridged object types allow the dymanic object type check to be
bypassed based on the pointer encoding:
(Builtin.BridgeObject)
Any of the above types may also be wrapped in an optional. If the
static argument type is optional, then a null check is also performed.
Thus, isUnique only returns true for non-null, native swift object
references with a strong reference count of one.
isUniqueOrPinned has the same semantics as isUnique except that it
also returns true if the object is marked pinned regardless of the
reference count. This allows for simultaneous non-structural
modification of multiple subobjects.
In some cases, the standard library can dynamically determine that it
has a native reference even though the static type is a bridge or
unknown object. Unsafe variants of the builtin are available to allow
the additional pointer bit mask and dynamic class lookup to be
bypassed in these cases:
isUnique_native : <T> (inout T[?]) -> Int1
isUniqueOrPinned_native : <T> (inout T[?]) -> Int1
These builtins perform an implicit cast to NativeObject before
checking uniqueness. There’s no way at SIL level to cast the address
of a reference, so we need to encapsulate this operation as part of
the builtin.
Swift SVN r27887
This is an internal-only affordance for the numerics team to be able to work on SIMD-compatible types. For now, it can only increase alignment of fixed-layout structs and enums; dynamic layout, classes, and other obvious extensions are left to another day when we can design a proper layout control design.
Swift SVN r27323
Some future-proofing to let us change ErrorType's reference counting in the future, or to use various tagged pointer optimizations in its representation.
Swift SVN r27213
Previously some parts of the compiler referred to them as "fields",
and most referred to them as "elements". Use the more generic 'elements'
nomenclature because that's what we refer to other things in the compiler
(e.g. the elements of a bracestmt).
At the same time, make the API better by providing "getElement" consistently
and using it, instead of getElements()[i].
NFC.
Swift SVN r26894
OpaqueStorageTypeInfo uses iNNN types that don't always have the correct alloc size for an expected
size at the LLVM level. This needs to be fixed before my partial apply closure fixes can hold.
Swift SVN r24551
In order to deal with generic indirect value captures, we need to be able to bind their type metadata in the partial apply forwarder and heap object destructor to have access to the value operations for that type. NecessaryBindings gives us a way to do that and clean up our ad-hoc polymorphic argument forwarding we had before. N(intended)FC yet, aside from some harmless reordering of operations, since we also need to implement NonFixedOffsets for heap objects to be fully operational.
Swift SVN r24526
IRGen uses a typedef, SpareBitVector, for its principal
purpose of tracking spare bits. Other uses should not
use this typedef, and I've tried to follow that, but I
did this rewrite mostly with sed and may have missed
some fixups.
This should be almost completely NFC. There may be
some subtle changes in spare bits for witness tables
and other off-beat pointer types. I also fixed a bug
where IRGen thought that thin functions were two
pointers wide, but this wouldn't have affected anything
because we never store thin functions anyway, since
they're not a valid AST type.
This commit repplies r24305 with two fixes:
- It fixes the computation of spare bits for unusual
integer types to use the already-agreed-upon type
size instead of recomputing it. This fixes the
i386 stdlib build. Joe and I agreed that we should
also change the size to use the LLVM alloc size
instead of the next power of 2, but this patch
does not do that yet.
- It changes the spare bits in function types back
to the empty set. I'll be changing this in a
follow-up, but it needs to be tied to runtime
changes. This fixes the regression test failures.
Swift SVN r24324
IRGen uses a typedef, SpareBitVector, for its principal
purpose of tracking spare bits. Other uses should not
use this typedef, and I've tried to follow that, but I
did this rewrite mostly with sed and may have missed
some fixups.
This should be almost completely NFC. There may be
some subtle changes in spare bits for witness tables
and other off-beat pointer types. I also fixed a bug
where IRGen thought that thin functions were two
pointers wide, but this wouldn't have affected anything
because we never store thin functions anyway, since
they're not a valid AST type.
Swift SVN r24305
Using the intrinsics is obnoxious because I needed them
to return Builtin.NativeObject?, but there's no reasonable
way to safely generate optional types from Builtins.cpp.
Ugh.
Dave and I also decided that there's no need for
swift_tryPin to allow a null object.
Swift SVN r23824