Test shadowed variable of same type
Fully type check caller side macro expansion
Skip macro default arg caller side expr at decl primary
Test macro expand more complex expressions
Set synthesized expression as implicit
Add test case for with argument, not compiling currently
Test with swiftinterface
Always use the string representation of the default argument
Now works across module boundary
Check works for multiple files
Make default argument expression work in single file
Use expected-error
Disallow expression macro as default argument
Using as a sub expression in default argument still allowed as expression macros behave the same as built-in magic literals
Add a `-min-runtime-version` option that can be used to avoid problems
when building on Linux and Windows where because the runtime isn't
part of the OS, availability doesn't solve the problem of trying to
build the compiler against an older runtime.
Also add functions to IRGen to make it easy to test feature
availability using both the runtime version and the existing Darwin
availability support.
rdar://121522431
Until stdlib can be built with noncopyable generics, stdlib types
can appear as ~Escapable and ~Copyable, leading to invalid inference.
Use a flag to test implicit lifetime dependence
Instead of providing a default value for `UnavailableDeclOptimizationMode`,
track it with an optional that defaults to `None`. This way the default
behavior can vary contextually while still honoring an explicit option passed
in on the command line.
Partially resolves rdar://121344690
This library uses GenericMetadataBuilder with a ReaderWriter that can read data and resolve pointers from MachO files, and emit a JSON representation of a dylib containing the built metadata.
We use LLVM's binary file readers to parse the MachO files and resolve fixups so we can follow pointers. This code is somewhat MachO specific, but could be generalized to other formats that LLVM supports.
rdar://116592577
Avoid forming invalid source ranges when
`ReturnLoc` is invalid. Also introduce a utility
to make this kind of range computation easier,
and use it in a couple of other cases.
Even if the final pattern ends up consuming the value, the match itself
must be nondestructive, because any match condition could fail and cause
us to have to go back to the original aggregate. For copyable values,
we can always copy our way out of consuming operations, but we don't
have that luxury for noncopyable types, so the entire match operation
has to be done as a borrow.
For address-only enums, this requires codifying part of our tag layout
algorithm in SIL, namely that an address-only enum will never use
spare bits or other overlapping storage for the enum tag. This allows
us to assume that `unchecked_take_enum_data_addr` is safely non-side-
effecting and match an address-only noncopyable enum as a borrow.
I put TODOs to remove defensive copies from various parts of our
copyable enum codegen, as well as to have the instruction report
its memory behavior as `None` when the projection is nondestructive,
but this disturbs SILGen for existing code in ways SIL passes aren't
yet ready for, so I'll leave those as is for now.
This patch is enough to get simple examples of noncopyable enum switches
to SILGen correctly. Additional work is necessary to stage in the binding
step of the pattern match; for a consuming switch, we'll need to end
the borrow(s) and then reproject the matched components so we can
consume them moving them into the owned bindings. The move-only checker
also needs to be updated because it currently always tries to convert
a switch into a consuming operation.
Obsolete the `-enable-swift3-objc-inference` option and related options by
removing support for inferring `@objc` attributes using Swift 3 rules.
Automated migration from Swift 3 has not been supported by the compiler for
many years.
Create a version of the metadata specialization code which is abstracted so that it can work in different contexts, such as building specialized metadata from dylibs on disk rather than from inside a running process.
The GenericMetadataBuilder class is templatized on a ReaderWriter. The ReaderWriter abstracts out everything that's different between in-process and external construction of this data. Instead of reading and writing pointers directly, the builder calls the ReaderWriter to resolve and write pointers. The ReaderWriter also handles symbol lookups and looking up other Swift types by name.
This is accompanied by a simple implementation of the ReaderWriter which works in-process. The abstracted calls to resolve and write pointers are implemented using standard pointer dereferencing.
A new SWIFT_DEBUG_VALIDATE_EXTERNAL_GENERIC_METADATA_BUILDER environment variable uses the in-process ReaderWriter to validate the builder by running it in parallel with the existing metadata builder code in the runtime. When enabled, the GenericMetadataBuilder is used to build a second copy of metadata built by the runtime, and the two are compared to ensure that they match. When this environment variable is not set, the new builder code is inactive.
The builder is incomplete, and this initial version only works on structs. Any unsupported type produces an error, and skips the validation.
rdar://116592420