In case the compiler is used with concurrency features enabled (by-default or otherwise), and an older SDK is used which does not include the `_Concurrency` module, do not load this module implicitly. Instead, emit a diagnostic indicating that no such module is found.
rdar://76967260
This will enable users to try out the '-enable-ossa-modules' flag if their
compiler supports it and get OSSA code on all inlinable code that they use. The
idea is that this is a nice way to stage this in and get more testing.
The specific implementation is that the module interface loader:
1. Knows if enable ossa modules is enabled not to search for any compiled
modules. We always rebuild from the interface file on the system.
2. Knows that if enable ossa modules is enabled to mixin a bit into the module
interface loader cache hash to ensure that we consider the specialized ossa
compiled modules to be different than the modules in that cache from the system.
This ensures that when said flag is enabled, the user transparently gets all
their code in OSSA form from transparent libraries.
Introduce a new compiler flag `-module-abi-name <name>` that uses the
given name as the ABI name for the module (rather than the module's
name in source code). The ABI name impacts name mangling and metadata.
In the legacy driver, these flags will merely be propagated to the
frontends to indicate that they should disable serialization of
incremental information in swift module files.
In the new driver, these flags control whether the Swift driver performs
an incremental build that is aware of metadata embedded in the module.
Kudos to David for coming up with our new marketing name: Incremental
Imports.
rdar://74363450
These new options mirror -o and -output-filelist and are used instead
of those options to supply the output file path(s) to record in the
index store. This is intended to allow sharing index data across
builds in separate directories that are otherwise equivalent as far
as the index data is concered (e.g. an ASAN build and a non-ASAN build)
by supplying the same -index-unit-output-path for both.
Resolves rdar://problem/74816412
This option allows the compiler to retry opening an input file if the previous
opening returns an error of bad file descriptor. Swift-driver will set this
argument in certain circumstances to walk-around such error.
rdar://73157185
This change adds a frontend flag, -verify-additional-file, which can be used to pass extra files directly to the diagnostic verifier. These files are not otherwise considered to be Swift source files; they are not compiled or even properly parsed.
This feature can be used to verify diagnostics emitted in non-source files, such as in module interfaces or header files.
It is now the responsibility of the scanDependencies code to instantiate (and share) the cache.
e.g. FrontendTool instantiates a new cache per `-scan-dependencies` invocation, and the DependencyScanningTool keeps one shared cache across its lifetime.
Starting at a crude -1000, each invocation primary input will get its own unique quasi-Pid.
Invocations with only one primary (non-batch) will get a real OS Pid.
The selection of the constant starting point matches what the driver does when outputting its parseable output.
Follow programming guidelines for these getters more closely and have them return a non-owning view of the underlying data instead of relying on callers to take const references to the copy that is returned here.
This will allow individual module scans in batch-scanning mode to share the already-scanned Swift and Clang modules, and avoid instantiating a brand new Clang `DependencyScanningService` for each batch entry.
Performance-improvement anecdote:
A simple experiment which performs a batch scan of all modules involved in planning a build of SwiftPM (using SwiftPM in explicit module build mode), which includes 126 batch entries (scan entry-points), with 21 distinct Swift modules and 27 distinct Clang modules (many Clang modules are scanned multiple times, at different target versions), this modification reduces the total time taken from ~34 seconds to ~6.
Adds a new frontend option
"-experimental-allow-module-with-compiler-errors". If any compilation
errors occur while generating the .swiftmodule, this mode will skip SIL
entirely and only serialize the (likey invalid) AST.
This existence of this option during generation is serialized into the
resulting .swiftmodule. Errors found in deserialization are only allowed
if it is set.
Primarily intended for IDE requests (eg. indexing and code completion)
to ensure robust cross-module results, despite possible errors.
Resolves rdar://69815975
This refactoring allows us to drop ModuleInterfaceLoader when explicit modules
are enabled. Before this change, the dependencies scanner needs the loader to be
present to access functionalities like collecting prebuilt module candidates.
With this option enabled, the dependency scanner gathers all import statements in source files of the main module (non-transitive) and outputs a list of imported modules.
This will be used by build systems and the swift-driver as a way to avoid redundant re-scanning in incremental contexts.
Tying InputFile to this option meant that every input that was not one of the explictly-blessed kinds was modeled as a Swift file.
With the new InputFile that infers file kinds, we no longer need CompilerInvocation::setInputKind