drop_deinit forwards ownership while effectively stripping the deinitializer. It is similar to a type cast.
Fixes rdar://125590074 ([NonescapableTypes] Nonescapable types
cannot have deinits)
ActorIsolation already has a "I have no value case": unspecified. Lets just use
that.
Just a mistake I made that I am trying to fix before anything further depends on
this code.
When cloning SIL, it's OK for conformances to Copyable or Escapable to
be carried-over as a builtin conformance, rather than an abstract
conformance.
This is a workaround for a bug introduced in
`6cd5468cceacc1d600c7dafdd4debc6740d1dfd6`.
resolves rdar://125460667
* Allow normal function results of @yield_once coroutines
* Address review comments
* Workaround LLVM coroutine codegen problem: it assumes that unwind path never returns.
This is not true to Swift coroutines as unwind path should end with error result.
[region-isolation] A few improvements + If a value is dynamically actor isolated, do not consider it transferred if the transfer statically was to that same actor isolation.
This issue can come up when a value is initially statically disconnected, but
after we performed dataflow, we discovered that it was actually actor isolated
at the transfer point, implying that we are not actually transferring.
Example:
```swift
@MainActor func testGlobalAndGlobalIsolatedPartialApplyMatch2() {
var ns = (NonSendableKlass(), NonSendableKlass())
// Regions: (ns.0, ns.1), {(mainActorIsolatedGlobal), @MainActor}
ns.0 = mainActorIsolatedGlobal
// Regions: {(ns.0, ns.1, mainActorIsolatedGlobal), @MainActor}
// This is not a transfer since ns is already main actor isolated.
let _ = { @MainActor in
print(ns)
}
useValue(ns)
}
```
To do this, I also added to SILFunction an actor isolation that SILGen puts on
the SILFunction during pre function visitation. We don't print it or serialize
it for now.
rdar://123474616
Change FieldSensitive's enum representation to allow distinguishing
among the elements with associated value. Consider
`unchecked_take_enum_data_addr` to consume all other fields than that
taken.
rdar://125113258
* Let the customBits and lastInitializedBitfieldID share a single uint64_t. This increases the number of available bits in SILNode and Operand from 8 to 20. Also, it simplifies the Operand class because no PointerIntPairs are used anymore to store the operand pointer fields.
* Instead make the "deleted" flag a separate bool field in SILNode (instead of encoding it with the sign of lastInitializedBitfieldID). Another simplification
* Enable important invariant checks also in release builds by using `require` instead of `assert`. Not catching such errors in release builds would be a disaster.
* Let the Swift optimization passes use all the available bits and not only a fixed amount of 8 (SILNode) and 16 (SILBasicBlock).
An instruction can consume multiple (discontiguous) fields. Use a
SmallBitVector to track the fields consumed by an instruction rather
than a TypeTreeLeafRange.
rdar://125103951
A `try_apply` with indirect out arguments is only a def for those arguments on
the success path. Model this by sinking the def-ness of the instruction into the
success branch of the try_apply, and introducing a new `DeadToLiveEdge` mode for
block liveness which stops propagation of use-before-def conditions into the
block that introduced the def. Fixes rdar://118567869.
Add PartialApplyInst.hasNoescapeCapture
Add PartialApplyInst.mayEscape
Refactor DiagnoseInvalidEscapingCaptures. This may change functionality because tuples containing a noescape closure are now correctly recognized. Although I'm not sure such tupes can ever be captured directly.
LLVM is presumably moving towards `std::string_view` -
`StringRef::startswith` is deprecated on tip. `SmallString::startswith`
was just renamed there (maybe with some small deprecation inbetween, but
if so, we've missed it).
The `SmallString::startswith` references were moved to
`.str().starts_with()`, rather than adding the `starts_with` on
`stable/20230725` as we only had a few of them. Open to switching that
over if anyone feels strongly though.