I need to start tracking the dynamic IsolationRegionInfo for the transferring
operand so I can ignore uses that are part of the same
IsolationRegionInfo. IsolationRegionInfo doesn't fit into a pointer, so just to
keep things the same, I am going to just allocate it.
This is an initial staging commit that tests out the bump ptr allocating without
expanding the type yet.
Enable KeyPath/AnyKeyPath/PartialKeyPath/WritableKeyPath in Embedded Swift, but
for compile-time use only:
- Add keypath optimizations into the mandatory optimizations pipeline
- Allow keypath optimizations to look through begin_borrow, to make them work
even in OSSA.
- If a use of a KeyPath doesn't optimize away, diagnose in PerformanceDiagnostics
- Make UnsafePointer.pointer(to:) transparent to allow the keypath optimization
to happen in the callers of UnsafePointer.pointer(to:).
I also eliminated the very basic "why is this task isolated" part of the warning
in favor of the larger, better, region history impl that I am going to land
soon. The diagnostic wasn't that good in the first place and also was fiddly. So
I removed it for now.
rdar://124960994
I am going to need this so that I can use it when evaluating partition
ops. Specifically, so I can when I find two values that do not merge correctly,
emit an error.
Now that we actually know the region that non transferrable things belong to, we
can use this information to give a better diagnostic here.
A really nice effect of this is that we now emit that actor isolated parameters
are actually actor isolated instead of task isolated.
In a subsequent commit, this is going to let me begin handling parameters with
actor regions in a nice way (and standardize all of the errors).
This is meant to be a refactoring commit that uses the current tests in tree to
make sure I did it correctly, so no tests need to be updated.
A destroy_value of Optional.none can be deleted.
A move-only struct with deinit has a non trivial SILType but OwnershipKind::None,
such values cannot be deleted.
For years, optimizer engineers have been hitting a common bug caused by passes
assuming all SILValues have a parent function only to be surprised by SILUndef.
Generally we see SILUndef not that often so we see this come up later in
testing. This patch eliminates that problem by making SILUndef uniqued at the
function level instead of the module level. This ensures that it makes sense for
SILUndef to have a parent function, eliminating this possibility since we can
define an API to get its parent function.
rdar://123484595
I am going to reuse this for TransferNonSendable. In the process I made a few
changes to make it more amenable to both use cases and used the current set of
tests that we have for noncopyable types to validate that I didn't break
anything.
This involved fixing a few different bugs.
1. We were just performing dataflow by setting that only the initial block needs
to be updated. This means that if there isn’t anything in the initial dataflow
block, we won’t visit any successor blocks. Instead the correct thing to do here
is to visit all blocks in the initial round.
2. I also needed to fix a separate issue where we were updating our union-find
data structure incorrectly as found by an assert on transfernonsendable.swift
that was triggered once I fixed 1. Put simply, we needed to set a new max label
+ 1 when our new max element is less than or equal to the old max label + 1…
before we just did less than so if we had a new max element that is the same as
our fresh label, we wouldn’t increment the fresh label.
rdar://119584497
* [SILOpt] Allow pre-specializations for _Trivial of known size
rdar://119224542
This allows pre-specializations to be generated and applied for trivial types of a shared size.
I left them as friends since that was in the original code. There isn't a reason
to do this and break the encapsulation of Partition. I just added reasonable
helpers that give PartitionOpEvaluator all of the functionality it needs.
Previously I avoided doing this since the only problem would be that in a case
where we had two transfer instructions that were in an if-else block, we would
just emit an error for one:
```swift
if boolValue {
transfer(x)
} else {
transfer(x) // Only emit error for this transfer!
}
useValue(x)
```
Now that we are tracking at the transfer point if any element in the transfer
was captured in a closure, this becomes an actual semantic issue since if we
track the transfer instruction that isn't reachable from the closure capture, we
will not become more pessimistic:
```swift
if boolValue {
closure = { useInOut(&x) }
transfer(x)
} else {
transfer(x)
}
// Since we grab from the else block, sendableField is allowed to be accessed
// since we do not track that x was captured by reference in a closure.
x.sendableField
useValue(x)
```
To be truly safe, we need to emit both errors.
rdar://119048779
If the var is captured in a closure before it is transferred, it is not safe to
access the Sendable field since we may race on accessing the field with an
assignment to the field in another concurrency domain.
rdar://115124361
I am not sure if this would ever actually ever cause a bug... but we should be
consistent. The issue here is that in the evaluator switch when processing
transfers in certain cases when we emitted an early error due to an actor
derived value we were performing a transfer and other times we weren't. With
this patch:
1. We now consistently do not actually transfer the value if it is actor
derived. It is always illegal to transfer an actor derived value... so we know
that if we always just error on transferring it, we have a safe model.
2. The switch we breaking so that we could do an assert that we canonicalized
the modified PartitionOp. Rather than do that and allow for people to
potentially return, I moved the assert into a SWIFT_DEFER and added an assert in
the continuation of the switch. This means that if an author ever breaks out of
the switch, they will hit the assert implying that the author in all cases must
explicitly return within the case statement guaranteeing this mistake does not
happen again.
Specifically:
1. If the value is transferred such that it becomes part of an actor region, the
value is permanently part of the actor region as one would normally have.
2. If the value is just used in an async let or is used by a nonisolated async
function within the async let then while the async let is alive it cannot be
used. But once the async let has been awaited upon, we allow for it to be used
again.
rdar://117506395
This means to support specializing functions with indirect error results.
Also, when specializing (and the concrete error type is loadable), convert the indirect error to a direct error.
rdar://118532113
[region-isolation] Since we now propagate the transferred instruction, use that to emit the error instead of attempting to infer the transfer instruction for a requires
This is another NFC refactor in preparation for changing how we emit
errors. Specifically, we need access to not only the instruction, but also the
specific operand that the transfer occurs at. This ensures that we can look up
the specific type information later when we emit an error rather than tracking
this information throughout the entire pass.
In cea0f00598, `InstructionDeleter` began
deleting `load [take]` instructions. Analogous to how it creates a
`destroy_value` when deleting an instruction which consumes a value, in
the case of deleting a `load [take]` the `InstructionDeleter` inserts a
compensating `destroy_addr`.
Previously, `DeadCodeElimination` did not observe the creation of any
instructions created by the `InstructionDeleter`. In the case of the
newly created `destroy_addr`, DCE didn't mark that the `destroy_addr`
was live and so deleted it. The result was a leak.
Here, this is fixed by passing an `InstModCallbacks`--with an
`onCreateNewInst` implementation--down into `erasePhiArgument` that
eventually invokes the `InstructionDeleter`. When the
`InstructionDeleter` creates a new instruction, DCE marks it live.
getExprForPartitionOp(...) just returned the expression from the loc of op.currentInst:
SILInstruction *sourceInstr = op.getSourceInst(/*assertNonNull=*/true);
Expr *expr = sourceInstr->getLoc().getAsASTNode<Expr>();
Instead of mucking around with exprs, just use the SILLocation from the
SILInstruction.
I also changed how we unique transfer instructions to just use the transfer
instruction itself instead of the AST/Expr of the transfer instruction.
Was experimenting with making PartitionOps a noncopyable type and I discovered
these places where we copy PartitionOps when we could use a const reference. It
is good not to copy PartitionOps since they potentially contain a heap allocated
array.
Sadly, my change to make PartitionOps noncopyable will have to wait until a
forthcoming commit here I overhaul how we emit errors since that older code
copies PartitionOps a lot and I would rather just delete that code and then fix
PartitionOps. But these are on the surface safe changes that makes sense to get
in separately to make that next patch easier to review.
What this does is really split the one dataflow we are performing into two
dataflows we perform at the same time. The first dataflow is the region dataflow
that we already have with transferring never occurring. The second dataflow is a
simple gen/kill dataflow where we gen on a transfer instruction and kill on
AssignFresh. What it tracks are regions where a specific element is transferred
and propagates the region until the element is given a new value. This of course
means that once the dataflow has converged, we have to emit an error not if the
value was transferred, but if any value in its region was transferred.