Move off `Type` based requests and onto `Decl`
based requests, utilizing name lookup's
`extractDirectlyReferencedNominalTypes` utility.
This allows us to better cache the results, and
avoids the need to guard against type variable
inputs when deciding whether or not to cache.
In ambiguity scenarios solutions are not applied back to the constraint
system, so it might not always have contextual type information when it
was recorded e.g. for a multi-statement closure.
Resolves: rdar://97396399
This was already enabled as part of `-enable-implicit-dynamic` but this
new flag allows turning on opaque type erasure all by itself whether or
not `dynamic` is added explicitly.
rdar://97375478
Instead of failing constraint generation by returning `nullptr` for an `ErrorExpr` or returning a null type when a type fails to be resolved, return a fresh type variable. This allows the constraint solver to continue further and produce more meaningful diagnostics.
Most importantly, it allows us to produce a solution where previously constraint generation for a syntactic element had failed, which is required to type check multi-statement closures in result builders inside the constraint system.
Rather than only setting the isolated-by-preconcurrency bit during
constraint application, track the closures it will be set for as part
of the constraint system and solution. Then, use that bit when
performing "strict concurrency context" checks and type adjustments,
so we don't treat an inferred-to-by-`@Sendable`-by-preconcurrency
closure in the solver as if it weren't related to preconcurrency.
Fixes the spurious warning from
https://github.com/apple/swift/issues/59910.
Rather than re-using `DiagnosticBehavior` to describe how a fix should
act, introduce `FixBehavior` to cover the differences between (e.g.)
always-as-awarning and downgrade-to-warning. While here, split the
`isWarning` predicate into two different predicates:
* `canApplySolution`: Whether we can still apply a solution when it
contains this particular fix.
* `affectsSolutionScore`: Whether
These two predicates are currently tied together, because that's the
existing behavior, but we don't necessarily want them to stay that way.
Instead of the `warning` Boolean threaded through the solver's
diagnostics, thread `DiagnosticBehavior` to be used as the behavior
limit. Use this for concurrency checking (specifically dropped
`@Sendable` and dropped global actors) so the solver gets more control
over these diagnostics.
This change restores the diagnostics to a usable state after the prior
change, which introduced extra noise. The only change from existing
beavior is that dropping a global actor from a function type is now
always a warning in Swift < 6. This is partly intentional, because
there are some places where dropping the global actor is well-formed.
Unfortunately current approach of making a conversion independent of location
doesn't work when conversion is required for multiple arguments to the
same call because solver expects that either there are no Double<->CGFloat
conversions, or one of them has already been applied which is not the case.
The reason why locations weren't preserved in the first place is due to
how a solution is applied to AST - AST is mutated first and then, if there
are any conversions, they are applied to the already mutated version of
original AST. This creates a problem for Double<->CGFloat which depends
on an overload choice of injected call and it's impossible to find it based
on the mutated AST. But it turns out that this is only an issue in two
specific cases - conversions against contextual type and after optional injection.
This situations could be mitigated by dropping parts of the locator which are
unimportant for the Double<->CGFloat conversion - anchor in case of contextual
and `OptionalPayload` element(s) in case of optional injection.
Resolves: https://github.com/apple/swift/issues/59374
The ObjCMethodLookupTable for protocols was not being serialized and rebuilt on load, so NominalTypeDecl::lookupDirect() on selectors was not working correctly for deserialized types. Correct this oversight.
Instead of asking SILGen to build calls to `makeIterator` and
`$generator.next()`, let's synthesize and type-check them
together with the rest of for-in preamble. This greatly simplifies
interaction between Sema and SILGen for for-in statements.