This makes sure that the compiler does not emit `-enable-experimental-cxx-interop`/`-cxx-interoperability-mode` flags in `.swiftinterface` files. Those flags were breaking explicit module builds. The module can still be rebuilt from its textual interface if C++ interop was enabled in the current compilation.
rdar://140203932
When serializing the module interface path of an interface that
is part of the SDK, we serialize relative to the SDK path. During
deserialization we need to know if a path was serialized relative
to the SDK or not. The existing logic assumes any relative path
has been serialized relative to the SDK, which makes it impossible
to compile modules from relative swiftinterface paths that are not
part of the SDK.
Update the swiftmodule file to include an attribute to show if the
path was serialized relative to the SDK or not, which is used
during deserialization to correctly reconstruct the interface path.
The symbol graph output from a module can contain an arbitrary number of
files, depending on what extensions it contains, so cache a list of
symbol graph files with their base name and contents so that they can be
replayed.
rdar://140286819
If the output loading failed after cache key lookup, treat that as a
warning and resume as if that is a cache miss. This is not a valid
configuration for builtin CAS but can happen for a remote CAS service
that failed to serve the output. Instead of failing, we should continue
to compile to avoid disruptive failures.
rdar://140822432
When compiling the swiftmodule from the textual swift interface, ensure
that we re-serialise the static or dynamic nature of the module. This is
required for proper code generation where the static and dynamic linking
is material to symbolic references. This also opens the possibility of
optimizations on other platforms via internalisation of the symbols.
Fixes: #77756
Also introduce two new frontend flags:
The -solver-scope-threshold flag sets the maximum number of scopes, which was
previously hardcoded to 1 million.
The -solver-trail-threshold flag sets the maximum number of trail steps,
which defaults to 64 million.
CAS support in compiler relies on supplementary paths to decide the mapping between input and output files. Therefore, we
have to compute the paths of the module ObjC trace files in this canonical place to have CAS support for
this newly added ObjC message trace files.
This change ensures that when loading some module dependency 'Bar' which has a package-only dependency on 'Foo', only the following clients attempt to resolve/load 'Foo':
- Source compilation with package-name equal to that of 'Bar'.
- Textual interface compilation of a *'package'* interface with package-name equal to that of 'Bar'.
Ensuring that the following kinds of clients do not attempt to resolve/load 'Foo':
- Source compilation with package-name different to that of 'Bar'
- Textual interface compilation of a public or private interface, regardless of package name.
This fixes the behavior where previously compilation of a Swift textual interface dependency 'X' from its public or private interface, with an interface-specified package-name, from a client without a matching package-name, resulted in a lookup of package-only dependencies of modules loaded into 'X'. This behavior is invalid if we are not building from the package textual interface, becuase the module dependency graph is defined by the package name of the source client, not individual module dependency package name. i.e. In-package module dependencies are resolved/loaded only if the parent source compile matches the package name.
Resolves rdar://139979180
Rather than exposing an `addFile` member on
ModuleDecl, have the `create` members take a
lambda that populates the files for the module.
Once module construction has finished, the files
are immutable.
To allow feature build settings to be composed more flexibly, allow an
`-enable-upcoming-feature` flag to be overridden by a
`-disable-upcoming-feature` flag. Whichever comes last on the command line
takes effect. Provide the same functionality for `-enable-experimental-feature`
as well.
Resolves rdar://126283879.
It is unsound to expose `package` declarations in textual interfaces without a
package identity for them to belong to so we should not offer this flag.
Resolves rdar://139361524.
This patch adds support for serialization and deserialization of
debug scopes.
Debug scopes are serialized in post order and enablement is
controlled through the experimental-serialize-debug-info flag which
is turned off by default. Functions only referred to by these debug
scopes are deserialized as zombie functions directly.
C++ swift::Parser is going to be replaced with SwiftParser+ASTGen.
Direct dependencies to it should be removed. Before that, remove
unnecessary '#include "swift/Parse/Parser.h"' to clarify what actually
depends on 'swift::Parser'.
Split 'swift::parseDeclName()' et al. into the dedicated files.
If an upcoming feature was enabled by passing it via `-enable-experimental-feature`,
downgrade the `already enabled` diagnostic to a warning.
Resolves rdar://139087679.
This achieves the same as clang's `-fdebug-info-for-profiling`, which
emits DWARF discriminators to aid in narrowing-down which basic block
corresponds to a particular instruction address. This is particularly
useful for sampling-based profiling.
rdar://135443278