* [IRGen] Add layout strings for generic and resilient types
rdar://105837048
* Add some corner cases
* Add flag to enable generic instantiation and some fixes
* Fix resilient types
* Fix metadata accessor function pointers in combined layout strings
rdar://105837040
* WIP: Store layout string in type metadata
* WIP: More cases working
* WIP: Layout strings almost working
* Add layout string pointer to struct metadata
* Fetch bytecode layout strings from metadata in runtime
* More efficient bytecode layout
* Add support for interpreted generics in layout strings
* Layout string instantiation, take and more
* Remove duplicate information from layout strings
* Include size of previous object in next objects offset to reduce number of increments at runtime
* Add support for existentials
* Build type layout strings with StructBuilder to support target sizes and metadata pointers
* Add support for resilient types
* Properly cache layout strings in compiler
* Generic resilient types working
* Non-generic resilient types working
* Instantiate resilient type in layout when possible
* Fix a few issues around alignment and signing
* Disable generics, fix static alignment
* Fix MultiPayloadEnum size when no extra tag is necessary
* Fixes after rebase
* Cleanup
* Fix most tests
* Fix objcImplementattion and non-Darwin builds
* Fix BytecodeLayouts on non-Darwin
* Fix Linux build
* Fix sizes in linux tests
* Sign layout string pointers
* Use nullptr instead of debug value
A lot of existing regression tests rely on there
being some form of move-only classes, despite
them being something that will not be available
to users (and not complete).
This change introduces a `MoveOnlyClasses`
experimental feature so that those tests don't
need to be fully rewritten just yet. You need to
include `-enable-experimental-feature MoveOnlyClasses` along with
`-enable-experimental-move-only` to get move-only classes.
Introduce the experimental feature `ParserDiagnostics`, which emits
diagnostics from the new Swift parser *first* for a source file. If
that produces any errors, we suppress any diagnostics emitted from the
C++ parser.
Introduce a new behavior when printing references to modules with an
`export_as` definition. Use the `export_as` name in the public swiftinterface
and the real module name in the private swiftinterface.
This has some limits but should still be an improvement over the current
behavior. First, the we use the `export_as` names only for references to clang
decls, not Swift decls with an underlying module defining an `export_as`.
Second, we always print the `export_as` name in the public swiftinterface,
even in the original swiftinterface file when the `export_as` target is likely
not know, so that generated swiftinterface is still broken.
This behavior is enabled by the flags `-enable-experimental-feature ModuleInterfaceExportAs`
or the `SWIFT_DEBUG_USE_EXPORTED_MODULE_NAME_IN_PUBLIC_ONLY` env var. We may
consider turning it on by default in the future.
rdar://98532918
Introduce an experimental option `BuiltinMacros` that takes the magic
literals (`#file`, `#line`, `#function`, etc.) after type checking and
processes the original source for the expression using the build
syntactic macro system in the swift-syntax library. At present, the
result of expansion is printed to standard output, but it's enough to
verify that we're able to find the corresponding syntax node based on
the C++ AST.
Introduce `MacroExpansionExpr` and `MacroExpansionDecl` and plumb it through. Parse them in roughly the same way we parse `ObjectLiteralExpr`.
The syntax is gated under `-enable-experimental-feature Macros`.
Global actors have been an accepted language feature for a couple of compiler releases now, but the feature definition was associated with the `--enable-experimental-concurrency` flag. This caused some `.swiftinterface`s containing global actor declarations to be unparsable because the logic for surrounding declarations with the `$GlobalActors` feature guard was incomplete (for example, classes with a global actor attribute were not guarded even though the declarations of global actor types were).
Rather than trying to fix the logic of `usesFeatureGlobalActors()`, enable it by default.
Adds a test that demonstrates that modules defining and using public global actors produce module interfaces that can be parsed successfully.
Resolves rdar://100150703
* [SILOptimizer] Add prespecialization for arbitray reference types
* Fix benchmark Package.swift
* Move SimpleArray to utils
* Fix multiple indirect result case
* Remove leftover code from previous attempt
* Fix test after rebase
* Move code to compute type replacements to SpecializedFunction
* Fix ownership when OSSA is enabled
* Fixes after rebase
* Changes after rebasing
* Add feature flag for layout pre-specialization
* Fix pre_specialize-macos.swift
* Add compiler flag to benchmark build
* Fix benchmark SwiftPM flags
Remove the CMake configuration option `SWIFT_SWIFT_PARSER_ROUNDTRIP`.
Instead, whenever the "early" SwiftSyntax module is built, link the
Swift Swift parser into the compiler and related tools.
Introduce a new experimental feature `ParserRoundTrip` that can be
enabled to perform round-trip testing.
By using the keyword instead of the function, we actually get a much simpler
implementation since we avoid all of the machinery of SILGenApply. Given that we
are going down that path, I am removing the old builtin implementation since it
is dead code.
The reason why I am removing this now is that in a subsequent commit, I want to
move all of the ownership checking passes to run /before/ mandatory inlining. I
originally placed the passes after mandatory inlining since the function version
of the move keyword was transparent and needing to be inlined before we could
process it. Since we use the keyword now, that is no longer an issue.
This was already enabled as part of `-enable-implicit-dynamic` but this
new flag allows turning on opaque type erasure all by itself whether or
not `dynamic` is added explicitly.
rdar://97375478
Introduce the `-enable-upcoming-feature X` command-line argument to
allow one to opt into features that will be enabled in an upcoming language
mode. Stage in several features this way (`ConciseMagicFile`,
`ForwardTrailingClosures`, `BareSlashRegexLiterals`).
`@Sendable` on completion handlers imported from Objective-C has been
implemented for a while, but has been disabled in production builds
due to a number of problems we've encountered with rolling it out.
Introduce an experimental feature for `@Sendable` completion handlers
so we can iterate on this more before we enable it by default.
Part of rdar://85569247, which will cover re-landing this feature.