We don't need special completion logic for things like `#file` and
`#line` now that they are declared in the standard library. Drop it
and update tests.
`lookupVisibleMemberDecls` visits nominal type decls to find visible
members of the type. Remembering what decls are visited can be useful
information for the clients.
* Add a 'VisibleDeclConsumer' callback function that is called when
'lookupVisibleDecls' visits each nominal type decls
* Remember the decl names in 'CodeCompletionContext' for future use
When we get rid of `LeaveClosureBodiesUnchecked` we no longer save closure types to the AST and thus also don’t save their actor isolation to the AST. Hence, we need to extract types and actor isolations of parent closures from the constraint system solution instead of the AST. This prepares `ActorIsolationChecker` to take custom functions to determine the type of an expression or the actor isolation of a closure.
Store whether a result is async in the `ContextFreeCodeCompletionResult` and determine whether an async method is used in a sync context when promoting the context free result to a contextual result.
rdar://78317170
When completing after `@`, record what kind of attributes are applicable here (property wrapper, result builder, global actor), mark types that are marked as property wrapper etc. as having a 'Convertible' type relation and mark all other types as having an invalid type relation.
rdar://78239501
In case of ambigous expression/global completions, we call `getValueCompletionsInDeclContext` multiple times for the amigous solutions to the constraint system. This can cause modules to be included multiple times in `RequestedCachedResults` and thus global results from these modules are reported multiple times. Make `RequestedCachedResults` a set so we don’t get duplicate results.
rdar://92048610
Computing the type relation for every item in the code completion cache is way to expensive (~4x slowdown for global completion that imports `SwiftUI`). Instead, compute a type’s supertypes (protocol conformances and superclasses) once and write their USRs to the cache. To compute a type relation we can then check if the contextual type is in the completion item’s supertypes.
This reduces the overhead of computing the type relations (again global completion that imports `SwiftUI`) to ~6% – measured by instructions executed.
Technically, we might miss some conversions like
- retroactive conformances inside another module (because we can’t cache them if that other module isn’t imported)
- complex generic conversions (just too complicated to model using USRs)
Because of this, we never report an `unrelated` type relation for global items but always default to `unknown`.
But I believe this change covers the most common cases and is a good tradeoff between accuracy and performance.
rdar://83846531
Computing the type relation for every item in the code completion cache is way to expensive (~4x slowdown for global completion that imports `SwiftUI`). Instead, compute a type’s supertypes (protocol conformances and superclasses) once and write their USRs to the cache. To compute a type relation we can then check if the contextual type is in the completion item’s supertypes.
This reduces the overhead of computing the type relations (again global completion that imports `SwiftUI`) to ~6% – measured by instructions executed.
Technically, we might miss some conversions like
- retroactive conformances inside another module (because we can’t cache them if that other module isn’t imported)
- complex generic conversions (just too complicated to model using USRs)
Because of this, we never report an `unrelated` type relation for global items but always default to `unknown`.
But I believe this change covers the most common cases and is a good tradeoff between accuracy and performance.
rdar://83846531