This frontend flag can be used as an alternative to
-experimental-skip-non-inlinable-function-bodies that doesn’t skip
functions defining nested types. We want to keep these types as they are
used by LLDB. Other functions ares safe to skip parsing and
type-checking.
rdar://71130519
"Function builders" are being renamed to "result builders". Add the
corresponding `@resultBuilder` attribute, with `@_functionBuilder` as
an alias for it, Update test cases to use @resultBuilder.
[broken] first impl of @actorIndependent in the type checker.
[broken] fixed mistake in my parsing code wrt invalid source range
[broken] found another spot where ActorIndependent needs custom handling
[broken] incomplete set of @actorIndependent(unsafe) tests
updates to ActorIndependentUnsafe
[fixed] add FIXME plus simple handling of IndependentUnsafe context
finished @actorIndependent(unsafe) regression tests
added wip serialization / deserialization test
focus test to just one actor class
round-trip serialize/deserialize test for @actorIndependent
serialize -> deserialize -> serialize -> compare to original
most of doug's comments
addressed robert's comments
fix printing bug; add module printing to regression test
[nfc] update comment for ActorIsolation::IndependentUnsafe
```
@_specialize(exported: true, spi: SPIGroupName, where T == Int)
public func myFunc() { }
```
The specialized entry point is only visible for modules that import
using `_spi(SPIGroupName) import ModuleDefiningMyFunc `.
rdar://64993425
This attribute allows to define a pre-specialized entry point of a
generic function in a library.
The following definition provides a pre-specialized entry point for
`genericFunc(_:)` for the parameter type `Int` that clients of the
library can call.
```
@_specialize(exported: true, where T == Int)
public func genericFunc<T>(_ t: T) { ... }
```
Pre-specializations of internal `@inlinable` functions are allowed.
```
@usableFromInline
internal struct GenericThing<T> {
@_specialize(exported: true, where T == Int)
@inlinable
internal func genericMethod(_ t: T) {
}
}
```
There is syntax to pre-specialize a method from a different module.
```
import ModuleDefiningGenericFunc
@_specialize(exported: true, target: genericFunc(_:), where T == Double)
func prespecialize_genericFunc(_ t: T) { fatalError("dont call") }
```
Specially marked extensions allow for pre-specialization of internal
methods accross module boundries (respecting `@inlinable` and
`@usableFromInline`).
```
import ModuleDefiningGenericThing
public struct Something {}
@_specializeExtension
extension GenericThing {
@_specialize(exported: true, target: genericMethod(_:), where T == Something)
func prespecialize_genericMethod(_ t: T) { fatalError("dont call") }
}
```
rdar://64993425
Take type body fingerprints into account for inteface hash checking.
Since `SourceFile.getInterfacehash()` doesn't digest the type body
fingerprints in the file, enabling type body fingerprints regressed
fast-completion.
rdar://problem/69890297
Code completion used to avoid forming single expression closures/function
bodies when the single expression contained the code completion expression
because a contextual type mismatch could result in types not being applied
to the AST, giving no completions.
Completions that have been migrated to the new solver-based completion
mechanism don't need this behavior, however. Rather than trying to guess
whether the type of completion we're going to end up performing is one of
the ones that haven't been migrated to the solver yet when parsing, instead
just always form single-expression closures/function bodies (like we do for
regular compilation) and undo the transformation if and when we know we're
going to perform a completion kind we haven't migrated yet.
Once all completion kinds are migrated, the undo-ing code can be removed.
Availability macros can’t be used in inlinable code
as inlinable is copied textually in the generated
swiftinterface files. Further would could lift this
limitation.
Introduce availability macros defined by a frontend flag.
This feature makes it possible to set the availability
versions at the moment of compilation instead of having
it hard coded in the sources. It can be used by projects
with a need to change the availability depending on the
compilation context while using the same sources.
The availability macro is defined with the `-define-availability` flag:
swift MyLib.swift -define-availability "_iOS8Aligned:macOS 10.10, iOS 8.0" ..
The macro can be used in code instead of a platform name and version:
@available(_iOS8Aligned, *)
public func foo() {}
rdar://problem/65612624
This was happening in the error recovery path when parsing accessors
on a pattern binding declaration that does not bind any variables, eg
let _: Int { 0 }
We'll need this to get the right 'selfDC' when name lookup
finds a 'self' declaration in a capture list, eg
class C {
func bar() {}
func foo() {
_ = { [self] in bar() }
}
}
For example, the completion below would trigger error recovery within the
closure, which we recover from by skipping to the first inner closure's right
brace. The fact that we recovered though, was not recorded. The closure is
treated as still being an error, triggering another recovery after it that
skips over the 'Thing' token, giving a lone closure expression, rather than a
call.
CreateThings {
Thing { point in
print("hello")
point.#^HERE^#
}
Thing { _ in }
}
This isn't an issue for code completion when the outer closure is a regular
closure, but when it's a function builder, invalid elements result in no types
being applied (no valid solutions) and we end up with no completion results.
The fix here is removing the error status from the parser result after the
initial parser recovery.
Expression evaluation in lldb wraps the entire user-written expression
in a new function body, which puts any new declarations written by the
user in local context.
There is a mechanism where declarations can get moved to the top level,
if they're only valid at the top level (imports, extensions etc), or
if the name of the declaration begins with '$'. This mechanism used to
actually add the declaration to the SourceFile's TopLevelDecls list,
which would break ASTScope invariants about source ranges being
monotonically increasing and non-overlapping.
Instead, we use the new 'hoisted' flag to mark the declarations as
hoisted, which leaves them syntactically in their original location
in the AST, but treats them as top level in SILGen and IRGen.
Part of <rdar://problem/53971116>.