SIL type lowering erases DynamicSelfType, so we generate
incorrect code when casting to DynamicSelfType. Fixing this
requires a fair amount of plumbing, but most of the
changes are mechanical.
Note that the textual SIL syntax for casts has changed
slightly; the target type is now a formal type without a '$',
not a SIL type.
Also, the unconditional_checked_cast_value and
checked_cast_value_br instructions now take the _source_
formal type as well, just like the *_addr forms they are
intended to replace.
Add `llvm_unreachable` to mark covered switches which MSVC does not
analyze correctly and believes that there exists a path through the
function without a return value.
I am going to use this to refactor a bunch of the goop in the cast optimizer. At
a high level, we are really just performing a giant switch over the casts to
grab different state. We then take that state and we pass it into the bridge
cast optimizer.
To make such code more compact/easier to understand, I am adding in this commit
a type erased dynamic cast instruction type called "SILDynamicCastInst". In
subsequent commits, I wire up each of the individual instructions to it one at a
time.
As an additional advantage it will enable us to take advantage of covered
switches when ever in the future we introduce new casts.
Previously the cast optimizer bailed out on any conformance with
requirements.
We can now constant-propagate this:
```
protocol P {}
struct S<E> {
var e: E
}
extension S : P where E == Int {}
func specializeMe<T>(_ t: T) {
if let p = t as? P {
// do fast things.
}
}
specializeMe(S(e: 0))
```
This turns out to be as simple as calling the TypeChecker.
<rdar://problem/46375150> Inlining does not seem to handle
specialization properly for Data.
This enabled two SIL transformations required to optimize
the code above:
(1) The witness method call can be devirtualized.
(2) The allows expensive dynamic runtime checks such as:
unconditional_checked_cast_addr Array<UInt8> in %array : $*Array<UInt8> to ContiguousBytes in %protocol : $*ContiguousBytes
Will be converted into:
%value = init_existential_addr %existential : $*ContiguousBytes, $Array<UInt8>
store %array to %value : $*Array<UInt8>
We've been running doxygen with the autobrief option for a couple of
years now. This makes the \brief markers into our comments
redundant. Since they are a visual distraction and we don't want to
encourage more \brief markers in new code either, this patch removes
them all.
Patch produced by
for i in $(git grep -l '\\brief'); do perl -pi -e 's/\\brief //g' $i & done
Remove the cast consumption kind from all unconditional casts. It
doesn't make sense for unconditional casts, complicates SIL ownership,
and wasn't fully supported for all variants. Copies should be
explicit.
The typedef `swift::Module` was a temporary solution that allowed
`swift::Module` to be renamed to `swift::ModuleDecl` without requiring
every single callsite to be modified.
Modify all the callsites, and get rid of the typedef.
If a Swift type T needs to be casted to a CF type, then we first cast T to its bridged NS type and then ref_cast the result to a corresponding CF type.
For example, if we need to cast String to CFString, we first cast String to NSString and then ref_cast the NSString to CFString.
Fixes rdar://problem/29745498
checked_cast_br promises to maintain RC identity, but a cast from an ErrorType-conforming class to NSError may change the RC identity by bridging. Make sure that potential class-to-NSError casts go through the indirect cast entry points for now. The runtime implementation still needs to be fixed to handle the class-to-NSError case, but this is part of rdar://problem/21116814.
Swift SVN r29089
Modules occupy a weird space in the AST now: they can be treated like
types (Swift.Int), which is captured by ModuleType. They can be
treated like values for disambiguation (Swift.print), which is
captured by ModuleExpr. And we jump through hoops in various places to
store "either a module or a decl".
Start cleaning this up by transforming Module into ModuleDecl, a
TypeDecl that's implicitly created to describe a module. Subsequent
changes will start folding away the special cases (ModuleExpr ->
DeclRefExpr, name lookup results stop having a separate Module case,
etc.).
Note that the Module -> ModuleDecl typedef is there to limit the
changes needed. Much of this patch is actually dealing with the fact
that Module used to have Ctx and Name public members that now need to
be accessed via getASTContext() and getName(), respectively.
Swift SVN r28284
Add more checks and logic into emitSuccessfulIndirectUnconditionalCast and emitSuccessfulScalarUnconditionalCast, so that its clients in sil-combine can be simplified by avoiding looking into special cases.
Swift SVN r26885
The logic for different special cases of type casting is spread over multiple places currently. This patch simply re-factors some of that code (folding of of type casts using statically known protocol conformances) and moves it into one central place, which makes it easier to maintain. Plus, it allows other clients of DynamicCasts benefit from it as well, e.g. the inliner can use this now. NFC.
Swift SVN r25486
unconditional_dynamic_cast_addr instruction.
Also, fix some major semantic problems with the
existing specialization of unconditional dynamic
casts by handling optional types and being much
more conservative about deciding that a cast is
infeasible.
This commit regresses specialization slightly by
failing to turn indirect dynamic casts into scalar
ones when possible; we can fix that easily enough
in a follow-up.
Swift SVN r19044