Adjust the serialized module loader to allow directory layouts for the
Swift module on non-Darwin targets, unifying the layout across all the
platforms. It also eases cross-architecture and cross-platform
development by having the same layout, which can enable more similar
flag usage.
Tying InputFile to this option meant that every input that was not one of the explictly-blessed kinds was modeled as a Swift file.
With the new InputFile that infers file kinds, we no longer need CompilerInvocation::setInputKind
These inputs were previously modeled as Swift files, which would lead to bizarre situations where parts of the pipeline expecting Swift inputs actually wound up parsing Objective-C.
This scanning mode allows swift-driver to query module dependencies in a batch
and in a more granular way. In short term, it could help solve a problem that
clang module dependencies may vary if target triple changes. In a longer term,
we could break a holistic dependencies graph into smaller pieces for better caching
and reusing.
This change doesn't include the implementation of using the specified scanner
arguments to set up Clang dependencies scanner. It will come in later commits.
Add a debugging mechanism that enables the JIT to dump the LLVM IR and
object files to enable debugging the JIT. This makes it easier to debug
the JIT mode failures. The idea was from Lang Hames!
- deduplicate the logic to compute the resource folder
- install headers and module files in shared and static resource folders
- forward -static flag when calling swiftc with -print-target-info
Print implementation-only imports in the private textual interface
only if also importing SPI. This allows to export types from
implementation-only imports in SPI and brings the private textual
interfaces in line with the binary interfaces.
This is a temporary solution as we need to better design the language
feature around this.
This feature requires passing -experimental-spi-imports to the frontend
that generates the private swiftinterface file.
Add `async` to the type system. `async` can be written as part of a
function type or function declaration, following the parameter list, e.g.,
func doSomeWork() async { ... }
`async` functions are distinct from non-`async` functions and there
are no conversions amongst them. At present, `async` functions do not
*do* anything, but this commit fully supports them as a distinct kind
of function throughout:
* Parsing of `async`
* AST representation of `async` in declarations and types
* Syntactic type representation of `async`
* (De-/re-)mangling of function types involving 'async'
* Runtime type representation and reconstruction of function types
involving `async`.
* Dynamic casting restrictions for `async` function types
* (De-)serialization of `async` function types
* Disabling overriding, witness matching, and conversions with
differing `async`