Its use in deserialization can be replaced with a
more general check for whether we're deserializing
into the same module. Its use in the SILVerifier
is subsumed by the check for whether the SILModule
is canonical, which it isn't during merge-modules.
This commit adds -lto flag for frontend to enable LTO at LLVM level.
When -lto=llvm given, compiler emits LLVM bitcode file instead of object
file and adds index summary for LTO.
In addition for ELF format, emit llvm.dependent-libraries section to
embed auto linking information
This reverts commit 621b3b4223.
The driver is double faulting on my Linux box (Fedora 32 / x86-64). It
crashes due to heap corruption, then hangs trying to introspect and
print the stack. There also appears to be an unrelated(?) uninitialized
memory error that valgrind detects (as opposed to malloc's own self
diagnostics).
Instead of taking paths of Swift module files from front-end command line
arguments, we should take a JSON file specifying details of explicit modules.
The advantages is (1) .swiftdoc and .swiftsourceinfo can be associated
with a .swiftmodule file, and (2) module names are explicitly used as
keys in the JSON input so we don't need to eagerly deserialize a .swiftmodule
file to collect the module name.
Previously the path to covered files in the __LLVM_COV / __llvm_covmap
section were absolute. This made remote builds with coverage information
difficult because all machines would have to have the same build root.
This change uses the values for `-coverage-prefix-map` to remap files in
the coverage info to relative paths. These paths work correctly with
llvm-cov when it is run from the same source directory as the
compilation, or from a different directory using the `-path-equivalence`
argument.
This is analogous to this change in clang https://reviews.llvm.org/D81122
-enable-experimental-private-intransitive-dependencies -> -enable-direct-intramodule-dependencies
-disable-experimental-private-intransitive-dependencies -> -disable-direct-intramodule-dependencies
While we're here, rename DependencyCollector::Mode's constants and clean
up the documentation.
Introduce an experimental mode (behind the flag
`experimental-one-way-closure-params`) that places one-way
constraints between closure parameter types and references to those
parameters within the body of the closure. The intent here is to
break up constraint systems further, potentially improving type
checking performance and making way for larger closure bodies to be
supported.
This is a source-breaking change when the body of a single-expression
closure is used to determine the parameter types. One obvious example
is when there is no contextual type, e.g.,
let _ = { $0 + 1 }
this type-checks today because `1` becomes `Int`, which matches the
`+` overload with the type `(Int, Int) -> Int`, determining the
parameter type `Int` for the closure. Such code would not type-check
with one-way constraints.
This commit adds -lto flag for driver to enable LTO at LLVM level.
When -lto=llvm given, compiler emits LLVM bitcode file instead of object
file and perform thin LTO using libLTO.dylib plugin.
When -lto=llvm-full given, perform full LTO instead of thin LTO.
Clang provides options to override that default value.
These options are accessible via the -Xcc flag.
Some Swift functions explicitly disable the frame pointer.
The clang options will not override those.
This default formatting style remains the same "LLVM style". "Swift style"
is what was previously enabled via -enable-experimental-diagnostic-formatting
Add a mode bit to the dependency collector that respects the frontend flag in the previous commit.
Notably, we now write over the dependency files at the end of the compiler pipeline when this flag is on so that dependency from SILGen and IRGen are properly written to disk.
Move the playground and debugger transforms out
of the Frontend and into `performTypeChecking`, as
we'd want them to be applied if
`performTypeChecking` was called lazily.