This provides support for observing properties to @override base properties,
observing what happens to them. Note that it still isn't possible to override
a stored property at all, so this only works when overriding a computed property.
Swift SVN r15280
As part of the nominal type descriptor for a struct or class, build a function that lazily generates the vector of type metadata for the fields of the nominal type given an instantiation of the type's metadata. To cache this for nongeneric types, produce a global variable we can stash the result in, or for generic types, reserve some space in the metadata template so that generic metadata instantiation naturally provides a space for every instance of the type.
Reapplying now that the missing Float80 builtin metadata is available.
Swift SVN r15260
As part of the nominal type descriptor for a struct or class, build a function that lazily generates the vector of type metadata for the fields of the nominal type given an instantiation of the type's metadata. To cache this for nongeneric types, produce a global variable we can stash the result in, or for generic types, reserve some space in the metadata template so that generic metadata instantiation naturally provides a space for every instance of the type.
Swift SVN r15256
Parse function declarations with the form
func murder inRoom(room: Int) weapon(Int) {}
where the function name ("murder") is separated from the parameter
names. This is the same style used in initializers, i.e.,
init withCString(cstr: CString) encoding(Encoding)
Swift SVN r15140
If a subclass defines no subobject initializers and all of its stored
properties have initial values, "inherit" all of the subobject
initializers of its superclass by creating a new initializer with the
same signature that overrides (and chains to) the corresponding
subobject initializer of its parent. Do this instead of blindly
creating a default initializer.
Note that we aren't yet doing this for generic initializers. That will
be a separate step.
Swift SVN r14995
1. Do not call getInterfaceType() on a decl if it isn't already set, since
this will cause it to be lazily computed, and it would be nice for the
ASTDumper to not side-effect our AST.
2. Print the interface type of a decl if present, even if the type is not.
Surprisingly to me, we compute the interface type a lot sooner than the type
for a decl in some cases.
Swift SVN r14951
To parse GenericParamList in SILParser, we try to share code with TypeChecker.
We add handleSILGenericParams in Subsystems.h in order for SILParser to call
TypeChecker's handling of GenericParamList (this is motivated by the example of
SILParser calling performTypeLocChecking). handleSILGenericParams calls
checkGenericParamList and finalizeGenericParamList.
A Builder field (ArchetypeBuilder*) is added to GenericParamList so we can add
the same-type requirements to GenericSignature in getAsCanonicalGenericSignature
by checking SameTypeRequirements of the builder.
resolvePotentialArchetypeToType is moved from a static helper function in
TypeCheckGeneric.cpp to a public helper function in ArchetypeBuilder.cpp.
When constructing the same-type requirements in getAsCanonicalGenericSignature,
we will call it to convert from PotentialArchetype to a dependent type.
rdar://16238241
Swift SVN r14922
In Sema, give derived '==' definitions the module's DerivedFileUnit as their decl context instead of the more general Module, and give it a backreference to the nominal type for which it was derived.
In SILGen, visit the derived global decls associated with Clang-imported enums, and give them shared linkage. Part of fixing <rdar://problem/16264703>.
Swift SVN r14875
When a subclass does not implement a designated initializer of its
superclass, introduce a stub initializer that simply traps. Such stubs
cannot be invoked directly using Swift syntax, but can be invoked
through the Objective-C runtime and from Objective-C code. Catch such
errors rather than allowing them to violate the memory safety of the
language.
Note that we're currently using cond_fail to trap; this will be
improved in the future,
Swift SVN r14839
The standard library likes to have default definitions for associated types,
which is good. Often the /choice/ of default type, however, is a type that
(indirectly) conforms to the very protocol containing the associated type.
Rather than try to make sure everything is present all at once, just delay
the deserialization of the default definition until it's actually requested.
This does swell the size of AssociatedTypeDecl by two words. I've filed
<rdar://problem/16266669> to remind myself to try to reduce this.
Part of <rdar://problem/16257259>
Swift SVN r14809
Make the name lookup interfaces all take DeclNames instead of identifiers, and update the lookup caches of the various file units to index their members by both compound name and simple name. Serialized modules are keyed by identifiers, so as a transitional hack, do simple name lookup then filter the results by compound name.
Swift SVN r14768
These return placeholder text at the moment, but this enables us to can build
infrastructure that passes them around before the ReST parser is working.
Swift SVN r14650
Teach name lookup to find complete object initializers in its
superclass when the current class overrides all of the subobject
initializers of its direct superclass.
Clean up the implicit declaration of constructors, so we don't rely on
callers in the type checker doing the right thing.
When we refer to a constructor within the type checker, always use the
type through which the constructor was found as the result of
construction, so that we can type-check uses of inherited complete
object initializers. Fixed a problem with the creation of
OpenExistentialExprs when the base object is a metatype.
The changes to the code completion tests are an improvement: we're
generating ExprSpecific completion results when referring to the
superclass initializer with the same signature as the initializer
we're in after "super.".
Swift SVN r14551
These are the only kinds of decl that will actually have compound names in practice in the short term. Initializers can have selector pieces too, but cannot be referenced outside of a constructor call, so their AST names don't matter.
Swift SVN r14540
If an enum has no cases with payloads, make it implicitly Equatable and Hashable, and derive default implementations of '==' and 'hashValue'. Insert the derived '==' into module context wrapped in a new DerivedFileUnit kind, and arrange for it to be codegenned with the deriving EnumDecl by adding a 'DerivedOperatorDecls' array to NominalTypeDecls that gets visited at SILGen time.
Swift SVN r14471
A few improvements in our checking of property overrides:
* Properly check for an extraneous @override on a property
* Don't allow overriding of stored properties or with a stored property
* Only allow a covariant override when the overridden property is not mutable
* Check overrides as part of validation, not in a post-pass
Swift SVN r14403
- Respond to Doug's code review feedback
- Stop hacking around with scopes and use "emplace" to work around RAII in the inactive config case
- Limit use of StringRef on the front-end, in favor of std::string
- Use ArrayRef rather than SmallVector within IfConfigDecl
- Reorder new property declarations on BraceStmt to prevent unnecessary alignment issues
- Update ParseBraceItems to better capture top-level declarations, rather than using token lookahead
Swift SVN r14306
These changes add support for build and target configurations in the compiler.
Build and target configurations, combined with the use of #if/#else/#endif allow
for conditional compilation within declaration and statement contexts.
Build configurations can be passed into the compiler via the new '-D' flag, or
set within the LangOptions class. Target configurations are implicit, and
currently only "os" and "arch" are supported.
Swift SVN r14305
Emit vtable entries for abstract initializers. When we're constructing
an object using an abstract initializer based on a metatype value that
is not statically derivable, use the vtable entry to call the
subclass's allocating constructor.
Most of the IRGen work here is hacking around the lossy SILDeclRef ->
(Code|Function)Ref -> SILDeclRef conversion. I'd feel bad about this
if John hadn't already agreed to clean this up at some point.
Swift SVN r14238
This is more in line with all other modules currently on our system.
If/when we get our final name for the language, we're at least now set
up to rename the library without /too/ much trouble. (This is mostly just
a lot of searching for "import swift", "swift.", "'swift'", and '"swift"'.
The compiler itself is pretty much just using STDLIB_NAME consistently now,
per r13758.)
<rdar://problem/15972383>
Swift SVN r14001
GenericSignatures with no params or requirements are a bug, so verify that they don't happen by making GenericSignature::get return null and GenericFunctionType assert that it has a nonnull signature. Hack Sema not to try to produce nongeneric GenericFunctionTypes when a function in a local type in a generic function context is type-checked; there's a deeper modeling issue that needs to be fixed here, but that's beyond the scope of 1.0. Now that GenericSignature always has at least one subtype, its factories no longer need an independent ASTContext argument.
Swift SVN r13837