Our handling of nested types was scattered in several places, and
(worse) correct computation of archetype anchors required us to
"explode" out all of the potential archetypes for every associated
type with the given name to ensure that we get the right one.
Make nested type construction somewhat more lazy: if asked for a
nested type for a specific associated type, just create the nested
type for that associated type (instead of *all* of them). If asked for
a nested type by name, either return the one we already have or create
the one that's most likely to be the archetype anchor. Overall, this
should result in many fewer potential archetypes being constructed.
When a requirement source involving a ProtocolRequirement element is
built prior to the requirement signature of the protocol it
references, we can end up with a requirement source whose steps don't
reflect was is actually available via the requirement signatures. When
building a conformance access path from such requirement sources,
canonicalize on-the-fly using the requirement signatures (which have
been/can be computed by this point) to produce a correct access path.
If a requirement is made redundant due to another requirement that was
inferred from the signature of a generic declaration, don't diagnose
the former as redundant. The user has likely written the requirement
explicitly for clarity purposes (e.g., to emphasize the Hashable
requirement on a function that takes a Set<T>). Removing the
requirement to silence the warning would make the code less clear.
This eliminates all of the annoying, spurious warnings from the build
of the overlays.
The ad hoc substitution functions here were really odd; use
SubstitutionMap directly, and pass it through to
GenericSignatureBuilder::addRequirement().
The stored dependent types in ProtocolRequirement elements within
requirement sources were incorrect for requirements created from the
requirement signature of another protocol, because we picked up the
already-substituted subject type. Thread the optional substitution map
through addRequirement(Requirement) as well, so we maintain the
original spelling of the stored dependent type.
This is a temporary fix; we should be able to recover the stored
dependent types from the potential archetypes in the requirement
source, so that we don't need to specify them explicitly at
construction time.
For a protocol requirement element within a requirement source, track
both the protocol in which the requirement was introduced as well as
the dependent type (relative to that protocol) on which the
requirement was introduced. This information is important when
reconstructing the path from a requirement-as-written to the location
of a desired protocol conformance.
Start reshuffling RequirementSource to store more information about
requirements in protocols. As a small step, track the source locations
for requirements written within the protocols themselves.
Note: there's a QoI regression here where we get duplicated
diagnostics (due to multiple generic signature builders being built
from a bad signature).
The use of floating sources allows us to carry through the protocol
information (i.e., "in which protocol do we look for this
information?") without immediately forming a new
RequirementSource. Yet more NFC refactoring for protocol-requirement
sources to carry more pertinent information.
Centralize the checking of a superclass constraint against a
same-type-to-concrete constraint. Additionally, produce a warning if
the superclass constraint is satisfied but is made redundant by an
existing same-type constraint.
Use the same infrastructure we have for same-type-to-concrete
constraints to check superclass constraints. Specifically,
* Track all superclass constraints; never "update" a requirement source
* Remove self-derived superclass constraints
* Pick the best superclass constraint within each connected component
of an equivalence class and use that for requirement generation.
* Diagnose conflicting superclass requirements during finalization
* Diagnose redundant superclass requirements (during finalization)
Introduce an operation on RequirementSource to determine whether a
constraint with such a source, when it lands on a given potential
archetype, is "self-derived": e.g., the final constraint is derived
from the original constraint. Remove such constraints from the system
during finalization, because otherwise they would make the original
constraint redundant.
Fixes rdar://problem/30478915, although we still need to apply this
same logic to other kinds of constraints in the system.
Use TrailingObjects to help us efficiently store the root potential
archetype within requirement sources, so we can reconstruct the
complete path from the point where a requirement was created to the
potential archetype it affects.
The test changes are because we are now dumping the root potential
archetype as part of -debug-generic-signatures.
Whenever we create a (root) requirement source, associate it with the
potential archetype on which the requirement is written. This lets us
follow a requirement source from the (stated or implied) requirement on
the root potential archetype to the effective requirement on the
resulting potential archetype.
Introduce FloatingRequirementSource for the cases where we need to
state what the root source is, but don't yet have a potential
archetype to attach it to. These get internally resolved to
RequirementSources as soon as possible.
Most clients that will be considering same-type-to-concrete
constraints will need to look at all of the constraints within the
equivalence class together. Store the same-type-to-concrete
constraints on the EquivalenceClass itself, which fits this use case
better, and should reduce the storage requirements by making potential
archetypes two pointers smaller. NFC
When we see a second same-type-to-concrete constraint on a particular
potential archetype, record it. Previously, we were checking it and
then updating the requirement source eagerly. That won't work with
proper recursion detection, and meant that we missed out on some
obvious redundant-same-type-constraint diagnostics.
The scheme here is to build up the equivalence classes without losing
any information, and then determine which information is redundant at
the end.
Introduce an equivalence-class abstraction that captures all of the
members of the equivalence class in a separate type that will maintain
the "truth" about the meaning of the equivalence class, rather than
having that information distributed amongst the potential archetypes
within the class.
For now, use it to capture the members of the equivalence classes, so
we have one SmallVector per equivalence class rather than N
SmallVectors.
Diagnose when a same-type constraint (to a concrete type) is made
redundant by another same-type constraint. Slightly improve the
diagnostic that handles collisions between two same-type constraints.
Track each same-type-to-concrete constraint on the potential archetype
against which it was written, and ensure that the requirement sources
for such same-type constraints stay with the potential archetypes on
which they were described. This is similar to the way we track
same-type constraints among potential archetypes.
Use this information to canonicalize same-type-to-concrete constraints
appropriately. For each connected component within an equivalence
class of potential archetypes, select the best requirement source to
the concrete type, or substitute in an abstract requirement source if
none exists. This approach ensures that components that would be
equivalent to that concrete type anyway get a derived source, while
components that get the concrete-type equivalence by being tied to
another
To get here, we also needed to change the notion of the archetype
anchor so that potential archetypes with no same-type constraints
directly in their path are preferred over potential archetypes that do
have a same-type constraint in their path. Otherwise, the anchor might
be something that is always concrete and is, therefore, not terribly
interesting.
Fixes the new case that popped up in rdar://problem/30478915.
Generic typealiases are entirely broken as archetypes, but some things
mostly worked with them before introducing ResolvedType, so let's
restore that behaviour.
This adds the concept of an "unresolved type" and a "resolved type",
where the latter involves stripping away any typealias archetype layers
from the former, to get to the "true" potential archetype or concrete
type that something refers to.
Unify the handling of the "inheritance" clauses of a generic type
parameter, associated type, or protocol, walking them in a
TypeRepr-preserving manner and adding requirements as they are
discovered. This sets the stage for providing better source-location
information [*].
This eliminates a redundant-but-different code path for protocol
"inheritance" clauses, which was using
ProtocolDecl::getInheritedProtocols() rather than looking at the
actual TypeReprs, and unifies the logic with that of associated types
and type parameters. This eliminates a near-DRY violation, sets us up
for simplifying the "inherited protocols" part of ProtocolDecl, and
sets us up better for the soon-to-be-proposed
class C { }
protocol P: C { }
[*] We still drop it, but now we have a FIXME!
Reimplement the RequirementSource class, which captures how
a particular requirement is satisfied by a generic signature. The
primary goal of this rework is to keep the complete path one follows
in a generic signature to get from some explicit requirement in the
generic signature to some derived requirement or type, e.g.,
1) Start at an explicit requirement "C: Collection"
2) Go to the inherited protocol Sequence,
3) Get the "Iterator" associated type
4) Get its conformance to "IteratorProtocol"
5) Get the "Element" associated type
We don't currently capture all of the information we want in the path,
but the basic structure is there, and should also allow us to capture
more source-location information, find the "optimal" path, etc. There are
are a number of potential uses:
* IRGen could eventually use this to dig out the witness tables and
type metadata it needs, instead of using its own fulfillment
strategy
* SubstitutionMap could use this to lookup conformances, rather than
it's egregious hacks
* The canonical generic signature builder could use this to lookup
conformances as needed, e.g., for the recursive-conformances case.
... and probably more simplifications, once we get this right.
This essentially undoes the implementation in 51da51dfc0, which
implicitly did a substitution of the Self type in a protocol's
requirement signature by threading around the replacement PA. This is
brittle because every part of the code needs to take and pass around the
argument. By preemptively substituting, the whole requirement is in the
right form from the time it enters `addRequirement`.
The infrastructure here also allows simplifying some code.