This is a squash of the following commits:
* [SE-0054] Import function pointer arg, return types, typedefs as optional
IUOs are only allowed on function decl arguments and return types, so
don't import typedefs or function pointer args or return types as IUO.
* [SE-0054] Only allow IUOs in function arg and result type.
When validating a TypeRepr, raise a diagnostic if an IUO is found
anywhere other thn the top level or as a function parameter or return
tpye.
* [SE-0054] Disable inference of IUOs by default
When considering a constraint of the form '$T1 is convertible to T!',
generate potential bindings 'T' and 'T?' for $T1, but not 'T!'. This
prevents variables without explicit type information from ending up with
IUO type. It also prevents implicit instantiation of functions and types
with IUO type arguments.
* [SE-0054] Remove the -disable-infer-iuos flag.
* Add nonnull annotations to ObjectiveCTests.h in benchmark suite.
On the Raspberry Pi 2 when trying to import Glibc, without this patch, it will attempt to
find the module map at "/usr/lib/swift/linux/armv7l/glibc.modulemap" and
fail to do so.
With this patch it will attempt to find the module map at
"/usr/lib/swift/linux/armv7/glibc.modulemap" where it will succeed in
finding the module map.
Similar behavior currently happens in the Driver and Frontend. To DRY up
this behavior it has been extracted to the Swift platform.
...with a better message than the generic "older version of the
compiler" one, when we know it's actually a different version of
Swift proper.
This still uses the same internal module version numbers to check
if the module is compatible; the presentation of language versions
is a diagnostic thing only.
Speaking of module version numbers, this deliberately does NOT
increment VERSION_MINOR; it's implemented in a backwards-compatible
way.
This will only work going forwards, of course; all existing modules
don't have a short version string, and I don't feel comfortable
assuming all older modules we might encounter are "Swift 2.2".
rdar://problem/25680392
Swift relies on this for now. So create our own. This makes more sense
than trying to add back in the API (which is dead besides the c api) or
use the c api itself. We should probably consider not using a global
context like this.
This adds an Android target for the stdlib. It is also the first
example of cross-compiling outside of Darwin.
Mailing list discussions:
1. https://lists.swift.org/pipermail/swift-dev/Week-of-Mon-20151207/000171.html
2. https://lists.swift.org/pipermail/swift-dev/Week-of-Mon-20151214/000492.html
The Android variant of Swift may be built using the following `build-script`
invocation:
```
$ utils/build-script \
-R \ # Build in ReleaseAssert mode.
--android \ # Build for Android.
--android-ndk ~/android-ndk-r10e \ # Path to an Android NDK.
--android-ndk-version 21 \
--android-icu-uc ~/libicu-android/armeabi-v7a/libicuuc.so \
--android-icu-uc-include ~/libicu-android/armeabi-v7a/icu/source/common \
--android-icu-i18n ~/libicu-android/armeabi-v7a/libicui18n.so \
--android-icu-i18n-include ~/libicu-android/armeabi-v7a/icu/source/i18n/
```
Android builds have the following dependencies, as can be seen in
the build script invocation:
1. An Android NDK of version 21 or greater, available to download
here: http://developer.android.com/ndk/downloads/index.html.
2. A libicu compatible with android-armv7.
An upcoming change has the SIL Optimizer drop the [fragile]
attribute from the specialized callee, unless the caller
is itself [fragile].
Since we need to distinguish specializations from fragile
and non-fragile contexts, add a new mangling node to
represent this concept.
initialization in-place on demand. Initialize parent metadata
references correctly on struct and enum metadata.
Also includes several minor improvements related to relative
pointers that I was using before deciding to simply switch the
parent reference to an absolute reference to get better access
patterns.
Includes a fix since the earlier commit to make enum metadata
writable if they have an unfilled payload size. This didn't show
up on Darwin because "constant" is currently unenforced there in
global data containing relocations.
This patch requires an associated LLDB change which is being
submitted in parallel.
Rename BlotMapVector's template typenames: MapTy -> MapT and VectorTy -> VectorT. This is consistent both with BlotMapVector's other template typename KeyT and ValueT, and with SmallBlotMapVector's MapT and VectorT template typenames.
Before the refactor, a dangling reference to a string may be stored in a DemanglePrinter in at least the following cases:
1) If an lvalue DemanglePrinter is initialized with an rvalue string:
DemanglePrinter printer("abc");
2) If an lvalue DemanglePrinter is initialized with an lvalue string which doesn't live as long as the printer:
unique_ptr<DemanglePrinter> printer;
{
std::string s = "abc";
printer = make_unique<DemanglePrinter>(s);
}
// Reference stored in printer is dangling
In addition, in all existing cases in the code where an lvalue DemanglePrinter is used, an empty string is initialized just before it, which isn't DRY, and is related to the previous problem - the coder shouldn't be expected to maintain the lifetime of a string separate from the DemanglePrinter which references it.
In addition, before the refactor, in any in-line use of DemanglePrinter it is constructed with an empty string parameter (in which to construct the string), but this doesn't look very clean.
The refactor solves the above issues by maintaining its own string as a member, while still enabling the original intent of being able to use DemanglePrinter both as an lvalue constructively before getting its value, and in-line as an rvalue.