This patch also performs minor refactoring to align syntax parsing
context with the right scope. We start to support the generic clauses
because they are necessary pieces to construct struct or
function syntax node.
* libSyntax: Parse member access expression.
This patch uses createNodeInPlace from syntax parsing context API to
merge an expression with its suffix to create recursive nodes such as
member access expression.
Meanwhile, this patch breaks down a signed integer or float literal to a
prefix operator expression. This expression consists of two parts: an
operator and the following expression. This makes literals like "+1" or
"-1" no different from other prefix unary expressions such as "!true".
This commit also adds ArrayExpr and DictionaryExpr to the libSyntax nodes
family. Also, it refactors the original parser code for these two
expressions to better fit to the design of SyntaxParsingContext.
This commit has also fixed two crashers.
This commit teaches parser to parse two libSyntax nodes: FunctionCallArgument and
FunctionCallArgumentList. Along with the change, some libSyntax parsing infrastructure changes
as well: (1) parser doesn't directly insert token into the buffer for libSyntax node creation;
instead, when creating a simple libSyntax node like integer literal expression, parser should indicate the location of the last token in the node; (2) implicit libSyntax nodes like empty
statement list must contain a source location indicating where the implicit nodes should appear
(immediately before the token at the given location).
* Re-apply "libSyntax: Ensure round-trip printing when we build syntax tree from parser incrementally. (#12709)"
* Re-apply "libSyntax: Root parsing context should hold a reference to the current token in the parser, NFC."
* Re-apply "libSyntax: avoid copying token text when lexing token syntax nodes, NFC. (#12723)"
* Actually fix the container-overflow issue.
This patch allows Parser to generate a refined token stream to satisfy tooling's need. For syntax coloring, token stream from lexer is insufficient because (1) we have contextual keywords like get and set; (2) we may allow keywords to be used as argument labels and names; and (3) we need to split tokens like "==<". In this patch, these refinements are directly fulfilled through parsing without additional heuristics. The refined token vector is optionally saved in SourceFile instance.
We can just use parseType() everywhere instead. We already check
for non-identifier types in inheritance clauses elsewhere, and indeed
we have to anyway because an identifier type might resolve to a
type alias whose underlying type is a non-nominal type.
It doesn't look like this change made any diagnostics worse, but if
we find a case where it did, we could revert it.
We had two slightly different codepaths to diagnose ': class'
in an inheritance clause where it is not supported.
For generic parameters, we would fix the 'class' to 'AnyObject',
but for associated types we didn't do this. Perform the fix in
all cases where it makes sense and remove one of the two
diagnostics.
This implementation required a compromise between parser
performance and AST structuring. On the one hand, Parse
must be fast in order to keep things in the IDE zippy, on
the other we must hit the disk to properly resolve 'canImport'
conditions and inject members of the active clause into the AST.
Additionally, a Parse-only pass may not provide platform-specific
information to the compiler invocation and so may mistakenly
activate or de-activate branches in the if-configuration decl.
The compromise is to perform condition evaluation only when
continuing on to semantic analysis. This keeps the parser quick
and avoids the unpacking that parse does for active conditions
while still retaining the ability to see through to an active
condition when we know we're moving on to semantic analysis anyways.
This fixes various issues with getting no code-completion in top-level
code containing array/dictionary sugar, such as:
```
for x in [<HERE>] {}
for x in [1: 2, <HERE>] {}
```
And also removes the index variable from completions inside the sequence
(it was coming through as a local variable with <<error type>>).
rdar://problem/33884082
Complete generic parameters and their members inside generic where
clauses on structs, classes, enums, extensions, typealiases, funcs,
subscripts and inits.
Still not handled correctly are associatedtypes.
rdar://problem/20582394