So far single payload enums were implemented in terms of runtime functions which
internally emitted several calls to value witnesses.
This commit adds value witnesses to get and store the enum tag side stepping the
need for witness calls as this information is statically available in many cases
/// int (*getEnumTagSinglePayload)(const T* enum, UINT_TYPE emptyCases)
/// Given an instance of valid single payload enum with a payload of this
/// witness table's type (e.g Optional<ThisType>) , get the tag of the enum.
/// void (*storeEnumTagSinglePayload)(T* enum, INT_TYPE whichCase,
/// UINT_TYPE emptyCases)
/// Given uninitialized memory for an instance of a single payload enum with a
/// payload of this witness table's type (e.g Optional<ThisType>), store the
/// tag.
A simple 'for element in array' loop in generic code operating on a
ContigousArray of Int is ~25% faster on arm64.
rdar://31408033
Integer and Floating literals are aware of their negation but
do not store the sign in the text of the value. Retrieve the
sign bit and properly interpolate the text of the literal value
with it to distinguish negative and positive literals.
LLVM r299341 removed the llvm::integerPart typedef and replaced it
with llvm::APInt::WordType. The integerPartWidth constant was replaced
by llvm::APInt::APINT_BITS_PER_WORD.
A lot of files transitively include Expr.h, because it was
included from SILInstruction.h, SILLocation.h and SILDeclRef.h.
However in reality most of these files don't do anything
with Exprs, especially not anything in IRGen or the SILOptimizer.
Now we're down to 171 files in the frontend which depend on
Expr.h, which is still a lot but much better than before.
This gives big code size wins for unused types and also for types, which are never used in a generic context.
Also it reduces the amount of symbols in the symbol table.
The size wins heavily depend on the project. I have seen binary size reductions from 0 to 20% on real world projects.
rdar://problem/30119960
Use the generic type lowering algorithm described in
"docs/CallingConvention.rst#physical-lowering" to map from IRGen's explosion
type to the type expected by the ABI.
Change IRGen to use the swift calling convention (swiftcc) for native swift
functions.
Use the 'swiftself' attribute on self parameters and for closures contexts.
Use the 'swifterror' parameter for swift error parameters.
Change functions in the runtime that are called as native swift functions to use
the swift calling convention.
rdar://19978563
Storing this separately is unnecessary since we already
serialize the enum element's interface type. Also, this
eliminates one of the few remaining cases where we serialize
archetypes during AST serialization.
Changes:
* Terminate all namespaces with the correct closing comment.
* Make sure argument names in comments match the corresponding parameter name.
* Remove redundant get() calls on smart pointers.
* Prefer using "override" or "final" instead of "virtual". Remove "virtual" where appropriate.
It is technically assigned into dynamically in the loop below, but given
code-refactoring, this invariant could easily be broken yielding a use of an
uninitialized pointer. Better to just initialize and assert.
This attribute is used in the simd overlay. To ensure we can layout
SIMD types correctly, emit a fixed type descriptor instead of a
field type descriptor for these types.
This code is utility code that is just thrown around in the middle of the enum
emission code and makes it difficult to follow. It is something that is large
enough really to stand on its on.
FastISel doesn't like switch, and it's generally more compact code gen to build conditionals for two-target branches instead of switching all the time. There are many popular two-tag enums (Optional, someday Bool, Either) and this should greatly improve the potential for FastISel to kick in at -Onone.
We need to arrange enum type metadata in a way where a client can
fish out generic parameters without knowing if we have a payload
size or not. The payload size is only used inside the module that
defined the enum, and may change if new cases are added.
So put the generic parameters first before the payload size, and
don't crash when an EnumMetadataScanner is used with a resilient
enum.
In practice, this interferes with FastISel and has exposed lots of latent LLVM backend bugs. Using "normal" power-of-two-bytes sized integers is easier to work with and improves code gen performance for nonoptimizing clients like Swift Playgrounds.
This used to crash because the code storing empty payload enum tag values would
use the bit width of the tag (32 bit) as the minimum unit to store to the
payload even if the actual bits required to store the biggest tag value in the
payload was much smaller.
With payload bit-widths < 32bit we would run out of space crashing looking for
new payload to store the value to ...
Instead pass the maximum size of the bits that need storing down.
rdar://26926035
Instead of hooking into nominal type and extension emission
and walking all conformances of those declarations, let's
just directly hook into the logic for emitting conformances.
This fixes an issue where we would apparently emit duplicate
conformances, as well as unnecessary conformances that are
defined elsewhere.
Rather than collection nominal type and extension decls and emit
reflection metadata records in one go, we can emit them as they
are encountered and instead collection builtin types referenced
by those at the end.