Till now there was no way in SIL to explicitly express a dependency of an instruction on any opened archetypes used by it. This was a cause of many errors and correctness issues. In many cases the code was moved around without taking into account these dependencies, which resulted in breaking the invariant that any uses of an opened archetype should be dominated by the definition of this archetype.
This patch does the following:
- Map opened archetypes to the instructions defining them, i.e. to open_existential instructions.
- Introduce a helper class SILOpenedArchetypesTracker for creating and maintaining such mappings.
- Introduce a helper class SILOpenedArchetypesState for providing a read-only API for looking up available opened archetypes.
- Each SIL instruction which uses an opened archetype as a type gets an additional opened archetype operand representing a dependency of the instruction on this archetype. These opened archetypes operands are an in-memory representation. They are not serialized. Instead, they are re-constructed when reading binary or textual SIL files.
- SILVerifier was extended to conduct more thorough checks related to the usage of opened archetypes.
They are mandatory inlined anyway. Therefore the binary code of transparent functions is not used in most cases.
In case the address of a transparent function is taken, the main program (which deserialized the transparent function) generates code for it and treats it as shared function.
This reduces the stdlib code size by 2.8%.
As there are no instructions left which produce multiple result values, this is a NFC regarding the generated SIL and generated code.
Although this commit is large, most changes are straightforward adoptions to the changes in the ValueBase and SILValue classes.
And use project_box to get to the address value.
SILGen now generates a project_box for each alloc_box.
And IRGen re-uses the address value from the alloc_box if the operand of project_box is an alloc_box.
This lets the generated code be the same as before.
Other than that most changes of this (quite large) commit are straightforward.
(libraries now)
It has been generally agreed that we need to do this reorg, and now
seems like the perfect time. Some major pass reorganization is in the
works.
This does not have to be the final word on the matter. The consensus
among those working on the code is that it's much better than what we
had and a better starting point for future bike shedding.
Note that the previous organization was designed to allow separate
analysis and optimization libraries. It turns out this is an
artificial distinction and not an important goal.