This function checks if a mangled class name is going to be written into an NSArchive.
If yes, a warning should be printed and the return value should indicate that.
TODO: print the actual warning
rdar://problem/32414508
Like NSObject, CFType has primitive operations CFEqual and CFHash,
so Swift should allow those types to show up in Hashable positions
(like dictionaries). The most general way to do this was to
introduce a new protocol, _CFObject, and then have the importer
automatically make all CF types conform to it.
This did require one additional change: the == implementation that
calls through to CFEqual is in a new CoreFoundation overlay, but the
conformance is in the underlying Clang module. Therefore, operator
lookup for conformances has been changed to look in the overlay for
an imported declaration (if there is one).
This re-applies 361ab62454, reverted in
f50b1e73dc, after a /very/ long interval
where we decided if it was worth breaking people who've added these
conformances on their own. Since the workaround isn't too difficult---
use `#if swift(>=3.2)` to guard the extension introducing the
conformance---it was deemed acceptable.
https://bugs.swift.org/browse/SR-2388
* Integrate {JSON,PropertyList}{Encoder,Decoder} types to facilitate
encoding types in JSON and property list formats
* Adds Foundation-specific extensions to allow errors exposed from the
stdlib to bridge to NSErrors
This avoids indirection by making calls directly to the C implementations which prevents potentials of mismatched intent or changes of calling convention of @_silgen. The added benefit is that all of the shims in this case are no longer visible symbols (anyone using them was not authorized out side of the Foundation overlay). Also the callout methods in the headers now all share similar naming shcemes for easier refactoring and searching in the style of __NS<class><action> style. The previous compiled C/Objective-C source files were built with MRR the new headers MUST be ARC by Swift import rules.
The one caveat is that certain functions MUST avoid the bridge case (since they are part of the bridging code-paths and that would incur a recursive potential) which have the types erased up to NSObject * via the macro NS_NON_BRIDGED.
The remaining @_silgen declarations are either swift functions exposed externally to the rest of Swift’s runtime or are included in NSNumber.gyb which the Foundation team has other plans for removing those @_silgen functions at a later date and Data.swift has one external function left with @_silgen which is blocked by a bug in the compiler which seems to improperly import that particular method as an inline c function.
These changes caused a number of issues:
1. No debug info is emitted when a release-debug info compiler is built.
2. OS X deployment target specification is broken.
3. Swift options were broken without any attempt any recreating that
functionality. The specific option in question is --force-optimized-typechecker.
Such refactorings should be done in a fashion that does not break existing
users and use cases.
This reverts commit e6ce2ff388.
This reverts commit e8645f3750.
This reverts commit 89b038ea7e.
This reverts commit 497cac64d9.
This reverts commit 953ad094da.
This reverts commit e096d1c033.
rdar://30549345
This patch splits add_swift_library into two functions one which handles
the simple case of adding a library that is part of the compiler being
built and the second handling the more complicated case of "target"
libraries, which may need to build for one or more targets.
The new add_swift_library is built using llvm_add_library, which re-uses
LLVM's CMake modules. In adapting to use LLVM's modules some of
add_swift_library's named parameters have been removed and
LINK_LIBRARIES has changed to LINK_LIBS, and LLVM_LINK_COMPONENTS
changed to LINK_COMPONENTS.
This patch also cleans up libswiftBasic's handling of UUID library and
headers, and how it interfaces with gyb sources.
add_swift_library also no longer has the FILE_DEPENDS parameter, which
doesn't matter because llvm_add_library's DEPENDS parameter has the same
behavior.
os/activity.h or os/log.h. Update cmake files again, hardcoding a Darwin
dependency. The script does not notice that Foundation depends on
CoreGraphics, so add that manually.
Also found that MapKit is supported on WATCHOS but we didn't have dependencies
for that.
Favor one line per supported SDK instead of catch-all dependency lines.
Distinguish from SDKs which have no dependencies vs SDKs which are
unsupported on a particular platform by printing `unsupported` to the
console and remove the line in the cmake file because it should
not exist anyway.
This full cleanup was not done before because of circularity detected by the
util, which has since been fixed.
Support directories with spaces.
added the build breaks. There's already a tool to get proper
dependencies, `utils/find-overlay-dependencies.sh`, so this patch
allows that tool to update the `CMakeLists.txt` files in-place.
Also it adds a line to the `CMakeLists.txt` files for each SDK so that the tool works.
Extend NSNumber bridging to cover not only `Int`, `UInt`, `Double`, and `Bool`, but all of the standard types as well. Extend the `TypePreservingNSNumber` subclass to accommodate all of these types, so that we preserve type identity for `AnyHashable` and dynamic casting of Swift-bridged NSNumbers. If a pure Cocoa NSNumber is cast, just trust that the user knows what they're doing.
This XFAILs a couple of serialization tests that attempt to build the Foundation overlay, but which don't properly handle `gyb` files.
For every struct type for which the frameworks provides an NSValue category for boxing and unboxing values of that type, provide an _ObjectiveCBridgeable conformance in the Swift overlay that bridges that struct to NSValue, allowing the structs to be used naturally with id-as-Any APIs and Cocoa container classes. This is mostly a matter of gyb-ing out boilerplate using `NSValue.init(bytes:objCType:)` to construct the instance, `NSValue.objCType` to check its type when casting, and `NSValue.getValue(_:)` to extract the unboxed value, though there are a number of special snowflake cases that need special accommodation:
- To maintain proper layering, CoreGraphics structs need to be bridged in the Foundation overlay.
- AVFoundation provides the NSValue boxing categories for structs owned by CoreMedia, but it does so using its own internal subclasses of NSValue, and these subclasses do not interop properly with the standard `NSValue` subclasses instantiated by Foundation. To do the right thing, we therefore have to let AVFoundation provide the bridging implementation for the CoreMedia types, and we have to use its category methods to do so.
- SceneKit provides NSValue categories to box and unbox SCNVector3, SCNVector4, and SCNMatrix4; however, the methods it provides do so in an unusual way. SCNVector3 and SCNVector4 are packaged into `CGRect`s and then the CGRect is boxed using `valueWithCGRect:`. SCNMatrix4 is copied into a CATransform3D, which is then boxed using `valueWithCATransform3D:` from CoreAnimation. To be consistent with what SceneKit does, use its category methods for these types as well, and when casting, check the type against the type encoding SceneKit uses rather than the type encoding of the expected type.
Like NSObject, CFType has primitive operations CFEqual and CFHash,
so Swift should allow those types to show up in Hashable positions
(like dictionaries). The most general way to do this was to
introduce a new protocol, _CFObject, and then have the importer
automatically make all CF types conform to it.
This did require one additional change: the == implementation that
calls through to CFEqual is in a new CoreFoundation overlay, but the
conformance is in the underlying Clang module. Therefore, operator
lookup for conformances has been changed to look in the overlay for
an imported declaration (if there is one).
https://bugs.swift.org/browse/SR-2388
This simplifies the bridging story for Notifications to their objc counterparts since the id -> Any and AnyHashable changes have now been applied (which makes the previous boxing strategy no longer needed). Previous consumers of Notification that were using String keys should still work, however any explicit dictionary types should migrate from Swift 2.2 -> Swift 3 from userInfo as [NSObject:AnyObject] to [AnyHashable:Any]. The condition of distributed notifications (in non sandboxed apps) requiring plist types still applies and will fail at runtime if incorrect types are passed into the objective-c layer, and in the case of sandboxed apps userInfo still is forbidden (this change is a non functional change in the respect to those behaviors).
Resolves the following issues:
<rdar://problem/27426757>
<rdar://problem/27561621>
<rdar://problem/27259984>
As part of the extensive work on value types in Foundation this year, we
decided to also add value types for these three key classes. In addition
to adding value semantics, the API was extensively audited to improve
Swift interop (especially Calendar).
rdar://26628184
This reverts commit 46a9f57329.
This broke Swift CI, OSS incremental RA:
./swift/stdlib/public/SDK/Foundation/TimeZone.swift:228:45: error: 'NSTimeZone' is not implicitly convertible to 'TimeZone'; did you mean to use 'as' to explicitly convert?
return lhs._wrapped.isEqual(to: rhs._wrapped)