This adds the swift include path manually to the builds for the stubs
and the runtime. This has no impact for the build currently. However,
adding the additional include directory will enable a standalone build
for the stdlib.
String's hashValue function is implemented in terms of Foundation's hash
function in a runtime function on darwin platforms. For non-ASCII strings we
will call str.decomposedStringWithCanonicalMapping inside this runtime function
which will allocate a new NSString and return the result in the current
autorelease pool. We implemented this function in a file compiled without ARC.
This meant that we would leak said NSString into the current active autorelease
pool.
This patch moves the implementation to a file compiled with ARC. ARC will insert
objc_retainAutoreleasedReturnValue call and on platforms that require it an
marker for the hand-off of the autoreleased return value optimization.
SR-4889
rdar://32199117
Use the KeyPath implementation's new support for instantiating and dealing with captures to lower the generic context required to dispatch computed accessors with dependent generics.
Introduce shims for using UBreakIterators from ICU. Also introduce
shims for using thread local storage via pthreads.
We will be relying on ICU and UBreakIterators for grapheme
breaking. But, UBreakIterators are very expensive to create,
especially for the way we do grapheme breaking, which is relatively
stateless. Thus, we will stash one or more into thread local storage
and reset it as needed.
Note: Currently, pthread_key_t is hard coded for a single platform
(Darwin), but I have a static_assert alongside directions on how to
adapt it to any future platforms who differ in key type.
These changes caused a number of issues:
1. No debug info is emitted when a release-debug info compiler is built.
2. OS X deployment target specification is broken.
3. Swift options were broken without any attempt any recreating that
functionality. The specific option in question is --force-optimized-typechecker.
Such refactorings should be done in a fashion that does not break existing
users and use cases.
This reverts commit e6ce2ff388.
This reverts commit e8645f3750.
This reverts commit 89b038ea7e.
This reverts commit 497cac64d9.
This reverts commit 953ad094da.
This reverts commit e096d1c033.
rdar://30549345
This patch splits add_swift_library into two functions one which handles
the simple case of adding a library that is part of the compiler being
built and the second handling the more complicated case of "target"
libraries, which may need to build for one or more targets.
The new add_swift_library is built using llvm_add_library, which re-uses
LLVM's CMake modules. In adapting to use LLVM's modules some of
add_swift_library's named parameters have been removed and
LINK_LIBRARIES has changed to LINK_LIBS, and LLVM_LINK_COMPONENTS
changed to LINK_COMPONENTS.
This patch also cleans up libswiftBasic's handling of UUID library and
headers, and how it interfaces with gyb sources.
add_swift_library also no longer has the FILE_DEPENDS parameter, which
doesn't matter because llvm_add_library's DEPENDS parameter has the same
behavior.
The runtime and stubs are built for ALL targets, not specific ones. This allows
us to configure when cross-compiling to Windows again. Collapse the dual
addition of the swiftRuntime into a single build. This unifies the runtime
build for the apple and non-Apple SDKs. The difference here was the ObjC
interop sources. In order to deal with that unification add a CPP macro to
indicate whether the interop sources should be included or not.
We still have a bunch of redeclarations of Dispatch functions to avoid
the automatic bridging of dispatch_data_t and dispatch_block_t, but
mostly this is a vast reduction in complexity (and increase in safety).
The `add_swift_library` CMake function takes an optional `TARGET_SDKS`
parameter. When used, only CMake targets for the specified SDKs are added.
Refactor `stdlib/public/stubs` to use this parameter. This also eliminates
logic that determines additional flags or source files to include based on
`SWIFT_HOST_VARIANT`, which makes it easier for hosts to add targets for
different platforms.
id-as-Any lets you pass Optional to an ObjC API that takes `nonnull id`, and also lets you bridge containers of `Optional` to `NSArray` etc. When this occurs, we can unwrap the value and bridge it so that inhabited optionals still pass into ObjC in the expected way, but we need something to represent `none` other than the `nil` pointer. Cocoa provides `NSNull` as the canonical "null for containers" object, which is the least bad of many possible answers. If we happen to have the rare nested optional `T??`, there is no precedented analog for these in Cocoa, so just generate a unique sentinel object to preserve the `nil`-ness depth so we at least don't lose information round-tripping across the ObjC-Swift bridge.
Making Optional conform to _ObjectiveCBridgeable is more or less enough to make this all work, though there are a few additional edge case things that need to be fixed up. We don't want to accept `AnyObject??` as an @objc-compatible type, so special-case Optional in `getForeignRepresentable`.
Implements SR-0140 (rdar://problem/27905315).
id-as-Any lets you pass Optional to an ObjC API that takes `nonnull id`, and also lets you bridge containers of `Optional` to `NSArray` etc. When this occurs, we can unwrap the value and bridge it so that inhabited optionals still pass into ObjC in the expected way, but we need something to represent `none` other than the `nil` pointer. Cocoa provides `NSNull` as the canonical "null for containers" object, which is the least bad of many possible answers. If we happen to have the rare nested optional `T??`, there is no precedented analog for these in Cocoa, so just generate a unique sentinel object to preserve the `nil`-ness depth so we at least don't lose information round-tripping across the ObjC-Swift bridge.
Making Optional conform to _ObjectiveCBridgeable is more or less enough to make this all work, though there are a few additional edge case things that need to be fixed up. We don't want to accept `AnyObject??` as an @objc-compatible type, so special-case Optional in `getForeignRepresentable`.
Implements SR-0140 (rdar://problem/27905315).
If the Swift error wrapped in a _SwiftNativeNSError box conforms to
Hashable, the box now uses the Swift's conformance to Hashable.
Part of rdar://problem/27574348.
* Fix DispatchSourceSignal initialisation such that it no longer
registers for the wrong source type.
* Remove (group:) option from DispatchWorkItem, introduce group
options to `.async` methods that accept DispatchWorkItem.
* Rename `DispatchSourceType` to `DispatchSourceProtocol`
* Rework DispatchQueue attributes and flags into a less confusing
approach.
* Fixes:
SR-1817, SR-1771, SR-1770, SR-1769
<rdar://problem/26725156> <rdar://problem/26873917>
<rdar://problem/26918843> <rdar://problem/26810149>
<rdar://problem/27117023> <rdar://problem/27121422>
<rdar://problem/27236887> <rdar://problem/27337555>
Provides a new fallback for Process arguments for those instances where we do
not own main (e.g. Frameworks, Objective-C owns main.m or main.c, etc.). This
includes a number of platform-specific specializations of argument grabbing
logic and a new thread-safe interface to Process.unsafeArgv.
main() | _NSGetArgc/_NSGetArgv | /proc/self/cmdline | __argc/__argv
--------|--------------------------|------------------------|---------------
Scripts | OS X, iOS, tvOS, watchOS | Linux, FreeBSD, Cygwin | Windows
For interpreted Swift where we must filter out the arguments we now do so by
loading the standard library and calling into new SPI to override the arguments
that would have been grabbed by the runtime. This implementation completely
subsumes the use of the entry point '_stdlib_didEnterMain' and it will be
removed in a future commit.
When the standard library is built dynamically on COFF targets, the public
interfaces must be decorated in order to generate a proper DLL which can be
confused by the dependent libraries. When the exported interface is used, it
must be indirectly addressed. This can be done manually in code or the MS
extension of `__declspec(dllimport)` may be used to indicate to the compiler
that this symbol be addressed indirectly. This permits building more pieces of
the standard library dynamically on Windows.
This allows us to cross-compile the standard library to foreign targets on a
single host. The ICU dependencies can be specified on the command line on a
per-target basis. If one is not specified, we fall back to the default search
path and use that for the other targets.
Special thanks to Dimitri Gribenko for the various hints in getting this wired
up.
`stdlib/public/stubs` includes `unicode/ustring.h`,
`unicode/ucol.h`, `unicode/ucoleitr.h`, and `unicode/uiter.h`.
Also, `stubs` comes before `core` in the CMake configuration order.
As a result, ICU includes are not configured in time for `stubs`.
This causes an error when building Swift for Android.
This behavior was introduced in d227aeb. This commit reverts the
include order change.
Many of the report* entry points are specific to the stdlib assert implementation, so belong in the stdlib. Keep a single `reportError` entry point in the runtime to handle the CrashReporter/ASL interface, and call down to it from the assert implementation functions.
Move the ObjC internal declarations to a public runtime header so they can be shared, and rename _swift_deallocClassInstance to the more descriptive name swift_rootObjCDealloc (and make it only available with ObjC interop).
Set up a separate libSwiftStubs.a archive for C++ stub functionality that's needed by the standard library but not part of the core runtime interface. Seed it with the Stubs.cpp and LibcShims.cpp files, which consist only of stubs, though a few stubs are still strewn across the runtime code base.